IrDA Infrared Communication Module RPM960-H7

RPM960-H7 is an infrared communication module for IrDA Ver. 1.3 (Low Power). The infrared LED, PIN photo diode, and waveform shaping LSI are all integrated into one single package. This module is designed for low power consumption. The very small package makes it a perfect fit for mobile devices.

Features

- 1) Infrared LED, PIN photo diode, LED driver & Receiver frequency formation circuit built in. Improvement of EMI noise protection because of Shield Case.
- 2) Applied to SIR (2.4 k to 115.2 kbps) and MIR (0.576,1.152 Mbps)
- 3) Surface mount type.
- 4) Power down function built in.
- 5) Adjustable communication distance by LED load resistance value.

Applications

Cellular Phone, PDA, DVC, Digital Still Camera, Printer, Handy Terminal, etc

• Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc/LEDVCC/VIO	6.5 ×1	V
Input Voltage	Vin(3,4,5pin)	-0.3~VIO+0.3	V
Operation Temperature	Topr	-25~85	°C
Storage Temperature	Tstg	-30~100	°C
LED Peak Current	lfp	400 *2	mA
Power Dissipation	Pd	300 *3	mW

*1) This applies to all pins basis ground pin (8pin).

*2) LED Peak Current : <90 μs, On duty <25%

*3) When glass-epoxy board (70x70x1.6mm) mounted. In case of operating environment is over 25°C, 4mW would be reduced per each 1°C stepping up.

Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	VCC	2.4	3.0	3.6	V
	LEDVCC	2.7	3.0	5.5	V
	VIO	1.8	3.0	VCC	V

Photo Link Module

Recommended values

Part symbol	Recommended value	Notice		
6.8μF, Ceramic or tantalum		Bigger capacitance is recommended with much noise from power supply		
	Ex.) TCFGA1A685M8R (ROHM)			
D1	5.6Ω±5%,1/4 W	More than 50cm distance, more than 10μ W/cm ² at detecting		
КI	(VLEDVCC=3.0V)	side.(vs ver1.1)		

In case of using R1 with different condition from the above, formula is as follows : LED resistance value : R1{ Ω }, LED average consumption current : ILED{mA}, Supply voltage : VLEDVCC{V} necessary d{cm} (Including LED's distribution within±15 deg)

 $\label{eq:R1=T*(VLEDVCC-1.45) / d^2-5{\Omega}} \\ ILED=Duty*(VLEDVCC-1.36) / (R1+4) {A} \\ Duty: LED duty at emitting, T=17000 \\ \end{array}$

* at ILED / Duty <180 mA

Photo Link Module

Terminal description

Pin No	Terminal	Circuit	Function
1	LEDA		LED Anode Terminal Other power source can be used difference between LEDVCC and VCC. LED current depends on LED load resistance value. Include internal current limiter (max.400mA).
2	LEDC		LED Cathode Terminal This terminal must be left open.
3	TXD		Transmitting Data Input Terminal H:LED radiant (PWDOWN='L') CMOSLogic Level Input. Holding TXD="H"status,LED will be turn off approximately 48 μs.
4	RXD	PWDOWN VIO VIO VIO VIO VIO VIO VIO VIO	Receiving Data Output Terminal When PWDOWN(5pin)='H', the RXD output will be pulled up tp VIO at approximately 300 kΩ.
5	PWDOWN		Power-down Control Terminal H: POWERDOWN L: OPERATION CMOS Logic Level Input. When input is "H", it will stop the receiving circuit, Pin–PD current and transmitting LED operation.
6	VCC		VCC Supply voltage for Transceiver circuits. For preventing from infection, connect a capacitor between GND(8pin).
7	VIO		VIO Supply voltage for I / 0 pins (PWDOWN,RXD,TXD).
8	GND		GROUND
_	Shield Case		Connect to Ground.

Photo Link Module

ζ =			,	- ,	,	, ,
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Consumption Current 1	lcc1	270	440	610	μA	PWDOWN = OV At no input light
Consumption Current 2	lcc2	-	0.01	0.2	μA	PWDOWN = VIO At no input light
Transmission Rate		2.4	-	1152	kbps	
PWDOWN Input High Voltage	VPDH	2/3*VIO	I	VIO	V	VIO = 1.8 ~ 3.6 V
PWDOWN Input Low Voltage	VPDL	0	-	1/3*VIO	V	(VIO ≦ VCC)
PWDOWN Input High Current	IPDH	-1.0	0	1.0	μA	PWDOWN = VIO
PWDOWN Input Low Current	IPDL	-1.0	0	1.0	μA	PWDOWN = 0 V
< Transmitter >				1		1
TXD Input HighVoltage	VTXH	2/3*VIO	-	VIO	V	VIO = 1.8 ~ 3.6 V
TXD Input Low Voltage	VTXL	0	-	1/3*VIO	V	$(VIO \leq VCC)$
TXD Input HighCurrent	ITXH	2.5	5	10	μA	TXD = VIO
TXD Input Low Current	ITXL	-1.0	0	1.0	μΑ	TXD = 0 V
LED Anode Current 1	ILED1	-	170	-	mA	R1=5.6Ω
LED Anode Current 2	ILED2	180	260	400	mA	R1=5.6Ω
						LEDVCC=5.5V
< Receiver >	1					1
RXD Output High Voltage	VRXH	VIO-0.4	-	VIO	V	$IRXH = -200\mu A$
RXD Output Low Voltage	VRXL	0	_	0.4	V	$IRXL = 200 \mu A$
RXD Output Rise Time	tRR	-	20	-	ns	CL=15pF
RXD Output Fall Time	tFR	-	20	-	ns	CL=15pF
RXD Output Pulse Width	twRXD	228	380	532	ns	CL = 15pF, 2.4k~1.152 Mbps
RXD Output Pulse Edje Jitter	Tjrxd	-	-	160	ns	1.152 Mbps
Receiver Latency Time	tRT	-	100	200	μs	

●Electrical characteristics (Unless otherwise noted, Vcc=3V, LEDVCC=3V, VIO=3V, Ta=25°C)

●Optical characteristics (Unless otherwise noted, Vcc=3V, VLEDA=3V, VIO=3V, Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Peak Wave Length	λΡ	850	870	900	nm	
Intensity1	IE1	25	63	200	mW / Sr	−15 deg $\leq \theta$ L \leq 15 deg R1=5.6Ω
Intensity2	IE2	-	-	24	mW / Sr	$\theta L \leq -30 \text{ deg}, 30 \text{ deg} \leq \theta L$ R1=5.6 Ω
Half-Angle	θL / 2	-	±18	-	deg	
Rise Time / Fall Time	Tr / Tf	-	-	40	ns	10%~90%
Optical Over Shoot		-	_	25	%	
Edge Jitter	Tj	-25	-	25	ns	
Optical Pulse Width	Twe	172	217	256	ns	tTXD=217 ns
Minimum Irradiance in Angular	Eemin	-	9	14	μ W / cm ²	$-15 \text{ deg} \le \theta \text{ L} \le 15 \text{ deg}$
Maximum Irradiance in Augular	Eemax	500	-	-	mW / cm ²	$-15 \text{ deg} \leq \theta \text{ L} \leq 15 \text{ deg}$
Input Half–Angular	θD / 2	±15	-	-	deg	
Maximum Emitting Time	TLEDmax	16	48	120	μs	TXD=VIO

This product is not designed for protection against radioactive rays.
This product dose not include laser transmitter.
This product includes one PIN photo diode.
This product dose not include optical load.

RPM960-H7

Photo Link Module

Notes

- 1) LEDVCC (1pin), VCC (6pin) and VIO (7pin)
- \cdot Other power source can be used difference between LEDVCC and Vcc and VIO. (VIO < VCC +0.3V)
- 2) Caution in designing board lay-out
 - To get maximum potential from RPM960-H7, please keep in mind following instruction.
 - The line of RXD (4pin) should be connected at backside via through hole close to RPM960-H7 pin lead. Better not to be close to photo diode side (8pin side).
 - ⇒This is to minimize feedback supplied to photo diode from RXD.
 - · As for C1 between 6-8 pin should be placed close to RPM960-H7.
 - Better to be placed more than 1.0cm in radius from photo diode (8pin side) and also away from the parts which generates noise, such as DC / DC converter.
- 3) Notes
 - Please be sure to set up the TXD (3pin) input to be "L" (under 0.6V) except transmitting data
 - (for < 90µsec. On Duty < 25%).
 - \cdot Powerdown current might increase if exposed by strong light (ex. direct sunlight) at powerdown mode.
 - \cdot Please use by the signal format which is specified by IrDA Ver1.3 (Low Power) except 4 Mbps.
 - There might be on error if used by different signal format.
 - \cdot Dust or dirt on lens portion may affect the characteristics, so pay suffye Safe
 - · IEC825-1 (EN60825-1) Class 1 Eye Safe.

• External dimensions (Units : mm)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.