
Not Intended For New Designs August 1992

11C06 750 MHz D-Type Flip-Flop

11C06 750 MHz D-Type Flip-Flop

General Description

The 11C06 is a high-speed ECL D-Type Master-Slave Flip-Flop capable of toggle rates over 750 MHz. Designed primarily for high-speed prescaling, it can also be used in any application which does not require preset inputs. The circuit is voltage-compensated, which makes input thresholds and output levels insensitive to V_{EE} variations. Complementary Q and \overline{Q} outputs are provided, as are two Data inputs, Clock and Clock Enable inputs. The 11C06 is pin-compatible with the Motorola MC1690L but is a higher-frequency replacement.

©1995 National Semiconductor Corporation TL/F/9890

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings

Above which the useful life may be impaired						
levices are required, emiconductor Sales and specifications.						
$-65^{\circ}C$ to $+150^{\circ}C$						
+150°C						
-7.0V to GND						
V _{EE} to GND						
-50 mA						

Operating Range-5.7V to -4.7VLead Temperature (Soldering, 10 sec.)300°C

Recommended Operating Conditions

	Min	Тур	Мах
Supply Voltage (V _{EE})	-5.7V	-5.2V	-4.7V
Ambient Temperature (T _A)	0°C		+75°C

DC Electrical Characteristics

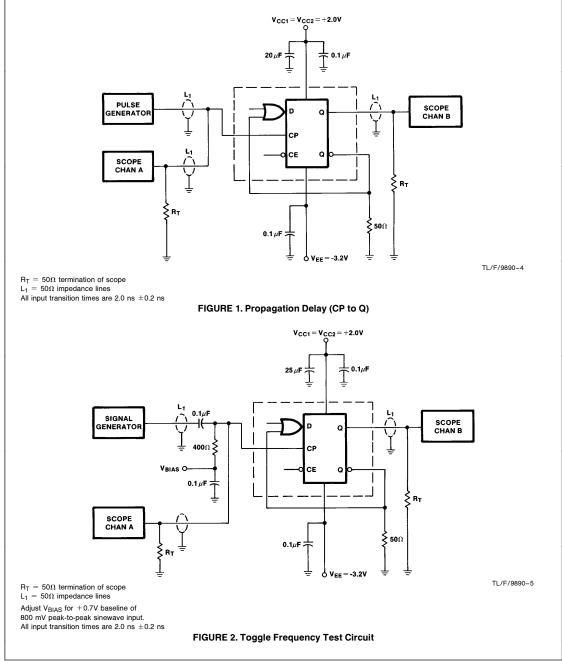
$V_{EE} =$	$-5.2V, V_{CC} =$	GND
------------	-------------------	-----

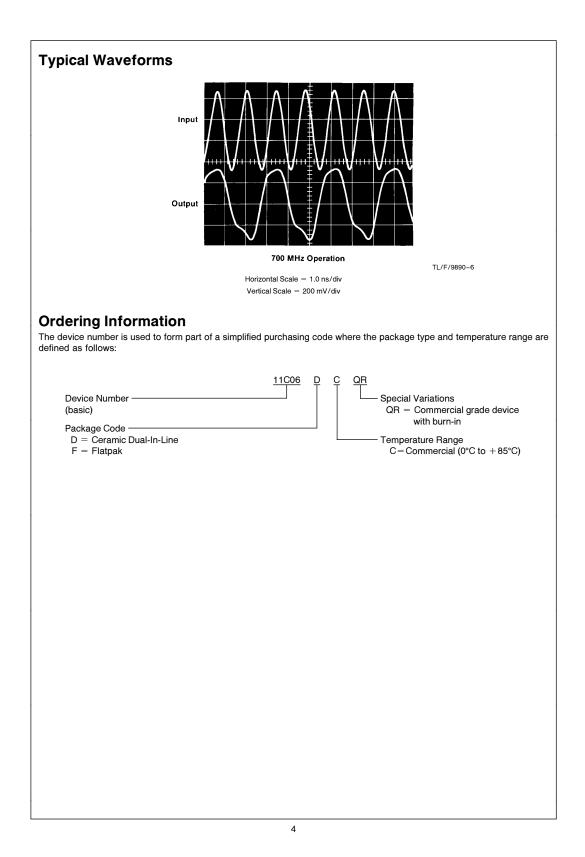
Symbol	Parameter	Min	Тур	Max	Units	TA	Conditions
V _{OH}	Output Voltage HIGH	-1000		-840	mV	0°C	$V_{IN} = V_{IH (Max)}$ or $V_{IL (Min)}$ per Truth
		-960		-810	mV	+25°C	Table Loading 50 Ω to $-2V$
		-900		-720	mV	+75°C	
V _{OL}	Output Voltage LOW	- 1870		- 1635	mV	0°C	
		-1850		-1620	mV	+25°C	
		- 1830		-1595	mV	+75°C	
V _{OHC}	Output Voltage HIGH	- 1020			mV	0°C	$V_{IN} = V_{IH (Min)}$ or $V_{IL (Max)}$ for D_n Inputs
		-980			mV	+25°C	Loading 50 Ω to -2V
		-920			mV	+75°C	
V _{OLC}	Output Voltage LOW			-1615	mV	0°C	
				-1600	mV	+25°C	
				-1575	mV	+75°C	
VIH	Input Voltage HIGH	-1135		-840	mV	0°C	Guaranteed Input Voltage HIGH
		- 1095		-810	mV	+25°C	for All Inputs
		- 1035		-720	mV	+75°C	
V _{IL}	Input Voltage LOW	- 1870		-1500	mV	0°C	Guaranteed Input Voltage LOW
		- 1850		-1485	mV	+25°C	for All Inputs
		- 1830		-1460	mV	+75°C	-
IIH	Input Current HIGH						V _{IN} = V _{IH (Max)}
	Clock Input			250	μA	+25°C	
	Data Input			270	μΑ	+ 25°C	
IIL	Input Current LOW	0.5			μΑ	+25°C	V _{IN} = V _{IH (Min)}
IEE	Power Supply Current	-59	-40		mA	+ 25°C	All Inputs Open

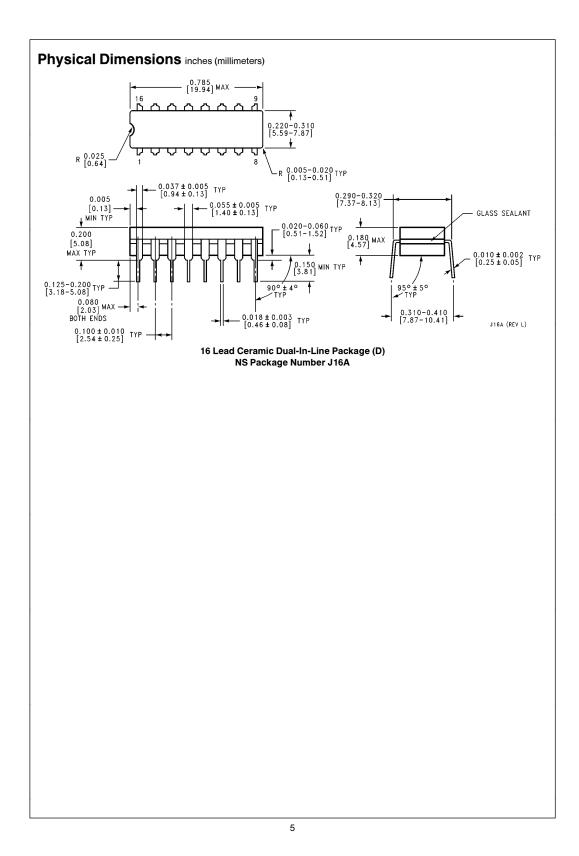
AC Electrical Characteristics

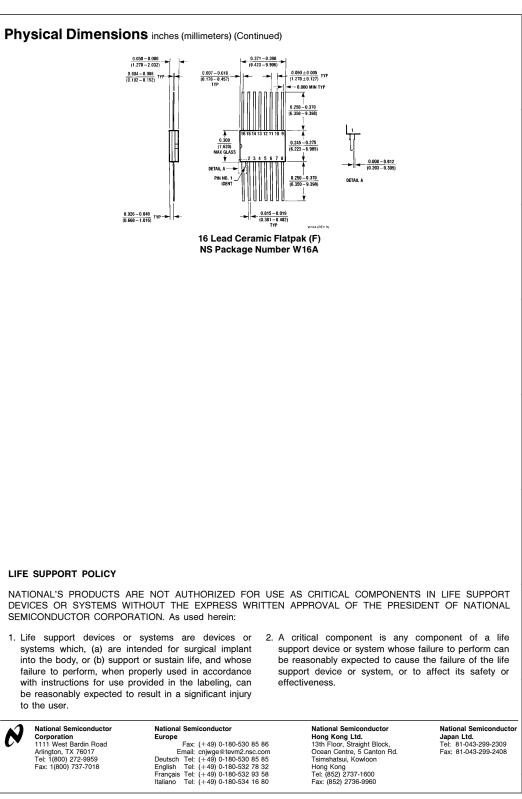
 $V_{\mathsf{EE}}=~-5.2\mathsf{V},\,\mathsf{V}_{\mathsf{CC}}=~\mathsf{GND},\,\mathsf{T}_{\mathsf{A}}=~+25^\circ\mathsf{C}$

Symbol	Parameter	Min	Тур	Max	Units	Conditions	
t _{PHL} t _{PLH}	Propagation Delay (CP-Q) Propagation Delay (CP-Q)	0.7 0.7	1.0 1.0	1.2 1.2	ns ns		
t _{TLH} t _{THL}	Transition Time 20% to 80% Transition Time 80% to 20%	0.5 0.5	0.8 0.8	1.0 1.0	ns ns	See <i>Figure 1</i>	
ts	Set-up Time		0.2		ns		
t _H	Hold Time		0.2		ns]	
^f tog (max)	Toggle Frequency (CP)	650	750		MHz	See Figure 2, Note	


Note: The device is guaranteed for f_{TOG} (CP) \geq 600 MHz, f_{TOG}(CE) \geq 550 MHz over the 0°C to $+75^{\circ}C$ temperature range.


Functional Description


While the clock is LOW, the slave is held steady and the information on the D input is permitted to enter the master. The next transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master causing the new information to appear on the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous


master-slave changes when the clock has slow rise or fall times.

The CP and \overline{CE} inputs are logically identical, but physical constraints associated with the Dual-In-Line package make the \overline{CE} input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, \overline{CE} should go HIGH while CP is still HIGH.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.