
CD4514BC. CD4515BC
Truth Table

Inhibit	Data Inputs				$\begin{aligned} & \text { Selected Output } \\ & \text { CD4514 = Logic " } 1 \text { " } \\ & \text { CD4515 = Logic "0" } \end{aligned}$
	D	C	B	A	
0	0	0	0	0	S0
0	0	0	0	1	S1
0	0	0	1	0	S2
0	0	0	1	1	S3
0	0	1	0	0	S4
0	0	1	0	1	S5
0	0	1	1	0	S6
0	0	1	1	1	S7
0	1	0	0	0	S8
0	1	0	0	1	S9
0	1	0	1	0	S10
0	1	0	1	1	S11
0	1	1	0	0	S12
0	1	1	0	1	S13
0	1	1	1	0	S14
0	1	1	1	1	S15
1	X	X	X	X	All Outputs = 0, CD4514
					All Outputs = 1, CD4515

X = Don't Care

Logic Diagram

Absolute Maximum (Note 2)	ings(Note 1)	Recommended Operating Conditions (Note 2)
DC Supply Voltage (V_{DD})	-0.5 V to +18 V	DC Supply Voltage (V_{DD}) 3 V to 15 V
Input Voltage ($\mathrm{V}_{\text {IN }}$)	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	Input Voltage (V_{IN}) $\mathrm{O}^{\text {d }}$ to V_{DD}
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Operating Temperature Range (T_{A})
Power Dissipation (P_{D})		CD4514BC, CD4515BC $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dual-In-Line	700 mW	Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation. Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Small Outline	500 mW	
Lead Temperature (T_{L}) (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units	
			Min	Max	Min	Typ	Max	Min	Max		
${ }^{\text {dD }}$	Quiescent Device Current	$\begin{array}{\|l} \hline V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ \hline \end{array}$		$\begin{gathered} 5 \\ 10 \\ 20 \end{gathered}$		$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \\ 20 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \\ \mathrm{I}_{\mathrm{O}} \mathrm{l}=1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	v	
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5.0 \\ 10.0 \\ 15.0 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & \\|_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	V	
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \\ & \hline \end{aligned}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		V	
${ }^{1} \mathrm{OL}$	LOW Level Output Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.64 \\ & 1.6 \\ & 4.2 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$		$\begin{array}{c\|} \hline 0.36 \\ 0.90 \\ 2.4 \\ \hline \end{array}$		mA	
IOH	HIGH Level Output Current (Note 3)	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} \hline-0.64 \\ -1.6 \\ -4.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline-0.51 \\ -1.3 \\ -3.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.88 \\ -2.25 \\ -8.8 \\ \hline \end{gathered}$		$\begin{aligned} & \hline-0.36 \\ & -0.90 \\ & -2.4 \\ & \hline \end{aligned}$		mA	
1 IN	Input Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$	

Note 3: I_{OH} and I_{OL} are tested one output at a time

AC Test Circuit and Switching Time Waveforms

Applications

Two CD4512 8-channel data selectors are used here with the CD4514B 4-bit latch/decoder to effect a complex data routing system. A total of 16 inputs from data registers are selected and transferred via a 3-STATE data bus to a data distributor for rearrangement and entry into 16 output registers. In this way sequential data can be re-routed or intermixed according to patterns determined by data select and distribution inputs.
Data is placed into the routing scheme via the 8 inputs on both CD4512 data selectors. One register is assigned to each input. The signals on A0, A1 and A2 choose 1 -of- 8 inputs for transfer out to the 3-STATE data bus. A fourth signal, labelled Dis, disables one of the CD4512 selectors, assuring transfer of data from only one register.
In addition to a choice of input registers, 1-16, the rate of transfer of the sequential information can also be varied. That is, if the CD4512 were addressed at a rate that is 8
times faster than the shift frequency of the input registers, the most significant bit (MSB) from each register could be selected for transfer to the data bus. Therefore, all of the most significant bits from all of the registers can be trans ferred to the data bus before the next most significant bit is presented for transfer by the input registers.
Information from the 3-STATE bus is redistributed by the CD4514B 4-bit latch/decoder. Using the 4-bit address, INA-IND, the information on the inhibit line can be transferred to the addressed output line to the desired output registers, A-P. This distribution of data bits to the output registers can be made in many complex patterns. For example, all of the most significant bits from the input registers can be routed into output register A, all of the next most significant bits into register B, etc. In this way horizonal, vertical, or other methods of data slicing can be implemented.

Physical Dimensions inches (millimeters) unless otherwise noted

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

