CD54HC573, CD74HC573 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCLS454 - FEBRUARY 2001

12 🛛 8Q

LE

8D 🛛 9

GND 1 10

С

- 2-V to 6-V V_{CC} Operation Range
- Wide Operating Temperature Range of -55°C to 125°C
- 3-State Outputs Directly Drive Bus Lines
- Balanced Propagation Delays and Transition Times
- Standard Outputs Drive up to 10 LS-TTL Loads
- Significant Power Reduction Compared to LS-TTL Logic ICs

description

The 'HC573 devices are octal transparent D-type latches designed for 2-V to 6-V V_{CC} operation.

When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is low, the Q outputs are latched at the logic levels of the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – E	Tube	CD74HC573E	CD74HC573E
	SOIC – M	Tube	CD74HC573M	HC573M
–55°C to 125°C		Tape and reel	CD74HC573M96	
	CDIP – F	Tube	CD54HC573F	CD54HC573F
		Tube	CD54HC573F3A	CD54HC573F3A

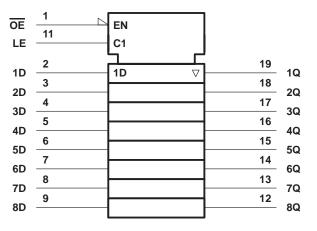
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

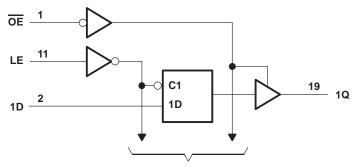
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.


CD54HC	5731	- PA	CKAGE
D74HC573	EO	RM	PACKAGE
	TOP VI	FW)	
,		,	
	\Box		
OE [1	20	V _{CC}
OE [1D [2	19] V _{CC}] 1Q
2D [3	18] 2Q
3D [4	17] 3Q
4D [5	16] 4Q
5D [6	15] 5Q
6D [7	14] 6Q
7D [8	13] 7Q

CD54HC573, CD74HC573 **OCTAL TRANSPARENT D-TYPE LATCHES** WITH 3-STATE OUTPUTS SCLS454 – FEBRUARY 2001

FUNCTION TABLE	
(each latch)	


	(each latch)								
	INPUTS								
OE	LE	D	Q						
L	Н	Н	Н						
L	н	L	L						
L	L	Х	Q ₀						
Н	Х	Х	Z						

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

CD54HC573, CD74HC573 **OCTAL TRANSPARENT D-TYPE LATCHES** WITH 3-STATE OUTPUTS

SCLS454 - FEBRUARY 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 1)	
Continuous output drain current per output, $I_O (V_O = 0 \text{ to } V_{CC})$	
Continuous output source or sink current per output, $I_O (V_O = 0 \text{ to } V_{CC})$	
Continuous current through V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): E package	80°C/W
M package	86°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		2	6	V
		$V_{CC} = 2 V$	1.5		
V_{IH}	High-level input voltage $V_{CC} = 4.5 V$		3.15		V
		V _{CC} = 6 V	4.2		
VIL	V _{CC} = 2 V			0.5	
	Low-level input voltage $V_{CC} = 4.5$	V _{CC} = 4.5 V		1.35	V
		V _{CC} = 6 V		1.8	
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
	V _{CC} = 2 V			1000	
tt	Input transition (rise and fall) time $V_{CC} = 4.5$	$V_{CC} = 4.5 V$		500	ns
	V _{CC} = 6 V				
TA	Operating free-air temperature		-55	125	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

CD54HC573, CD74HC573 **OCTAL TRANSPARENT D-TYPE LATCHES** WITH 3-STATE OUTPUTS

SCLS454 - FEBRUARY 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		Vcc	T _A = 25°C		T _A = −40°C TO 85°C		T _A = −55°C TO 125°C		UNIT								
				MIN	MAX	MIN	MAX	MIN	MAX									
			2 V	1.9		1.9		1.9										
		I _{OH} = -20 μA	4.5 V	4.4		4.4		4.4										
VOH	$V_I = V_{IH} \text{ or } V_{IL}$		6 V	5.9		5.9		5.9		V								
		I _{OH} = -6 mA	4.5 V	3.98		3.84		3.7										
		I _{OH} = -7.8 mA	6 V	5.48		5.34		5.2										
	VI = VIH or VIL	I _{OL} = 20 μA	2 V		0.1		0.1		0.1									
			I _{OL} = 20 μA	I _{OL} = 20 μA	I _{OL} = 20 μA	I _{OL} = 20 μA	I _{OL} = 20 μA	4.5 V		0.1		0.1		0.1				
V _{OL}			6 V		0.1		0.1		0.1	V								
		I _{OL} = 6 mA	4.5 V		0.26		0.33		0.4									
		I _{OL} = 7.8 mA	6 V		0.26		0.33		0.4									
Ц	$V_{I} = V_{CC} \text{ or } 0$		6 V		±0.1		±1		±1	μΑ								
I _{OZ}	$V_{O} = V_{CC} \text{ or } 0$		6 V		±0.5		±5		±10	μΑ								
ICC	$V_I = V_{CC} \text{ or } 0,$	IO = 0	6 V		8		80		160	μΑ								
Ci					10		10		10	pF								
Co					20		20		20	pF								

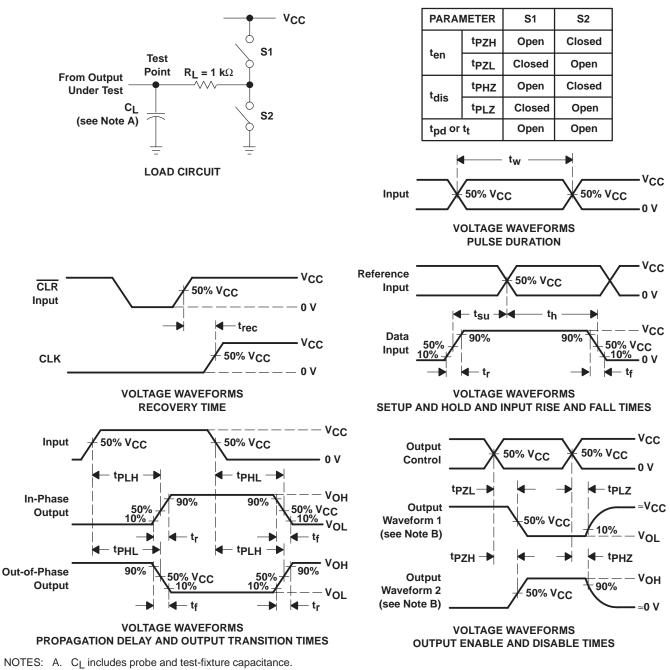
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		v _{cc}	T _A = 2	25°C	T _A = - TO 8		T _A = -{ TO 12		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
		2 V	80		100		120		
tw	Pulse duration, LE high	4.5 V	16		20		24		ns
		6 V	14		17		20		
		2 V	50		65		75		ns
t _{su}	Setup time, data before LE \downarrow	4.5 V	10		13		15		
		6 V	9		11		13		
		2 V	40		50		60		ns
th	Hold time, data after LE \downarrow	4.5 V	8		10		12		
		6 V	7		9		10		

CD54HC573, CD74HC573 **OCTAL TRANSPARENT D-TYPE LATCHES** WITH 3-STATE OUTPUTS

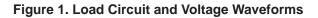
SCLS454 - FEBRUARY 2001

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO LOAD (OUTPUT) CAPACITANCE		Vcc	T _A = 25°C	T _A = −40°C TO 85°C	T _A = −55°C TO 125°C	UNIT			
		(001101)	CALACITANCE		MIN MAX	MIN MAX	MIN MAX				
				2 V	175	220	265				
	D	Q	$C_L = 50 \text{ pF}$	4.5 V	35	44	53				
÷ .				6 V	30	37	45	20			
^t pd				2 V	175	220	265	ns			
	LE	Q	C _L = 50 pF	4.5 V	35	44	53				
						6 V	30	37	45		
				2 V	150	190	225				
t _{en}	OE	Q	C _L = 50 pF	4.5 V	30	38	45	ns			
				6 V	26	33	38				
				2 V	150	190	225				
^t dis	OE	Q	CL = 50 pF	4.5 V	30	38	45	ns			
							6 V	26	33	38	
				2 V	60	75	90				
tt		Q	CL = 50 pF	4.5 V	12	15	18	ns			
				6 V	10	13	15				

operating characteristics, V_{CC} = 5 V, T_A = 25° C

	PARAMETER			
Cpd	Power dissipation capacitance	51	pF	



CD54HC573, CD74HC573 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCLS454 - FEBRUARY 2001

PARAMETER MEASUREMENT INFORMATION

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns, t_f = 6 ns.
 - D. For clock inputs, fmax is measured with the input duty cycle at 50%.
 - E. The outputs are measured one at a time with one input transition per measurement.
 - F. tpl z and tpHz are the same as tdis.
 - G. tp71 and tp7H are the same as ten.
 - H. tPLH and tPHL are the same as tpd.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated