### CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SCHS275C - MARCH 2002 - REVISED MAY 2003

- 2-V to 6-V V<sub>CC</sub> Operation ('HC190, 191)
- 4.5-V to 5.5-V V<sub>CC</sub> Operation ('HCT191)
- Wide Operating Temperature Range of –55°C to 125°C
- Synchronous Counting and Asynchronous Loading
- Two Outputs for n-Bit Cascading
- Look-Ahead Carry for High-Speed Counting
- Balanced Propagation Delays and Transition Times
- Standard Outputs Drive Up To 15 LS-TTL Loads
- Significant Power Reduction Compared to LS-TTL Logic ICs

#### CD54HC190, 191; CD54HCT191 . . . F PACKAGE CD74HC190 . . . E OR M PACKAGE CD74HC191, CD74HCT191...E PACKAGE (TOP VIEW) 16 V<sub>CC</sub> 15 🛮 A $Q_{B}$ $Q_{\underline{A}}$ 14 ∏ CLK 13 RCO CTEN [ D/U [5 12 MAX/MIN Q<sub>C</sub> []6 11 \( \bar{LOAD} 10 D C Q<sub>D</sub> []7 GND ∏8 9**∏** D

### description/ordering information

The CD54/74HC190 are asynchronously presettable BCD decade counters, whereas the CD54/74HC191 and CD54/74HCT191 are asynchronously presettable binary counters.

Presetting the counter to the number on preset data inputs (A–D) is accomplished by a low asynchronous parallel load ( $\overline{\text{LOAD}}$ ) input. Counting occurs when  $\overline{\text{LOAD}}$  is high, count enable ( $\overline{\text{CTEN}}$ ) is low, and the down/up (D/ $\overline{\text{U}}$ ) input is either high for down counting or low for up counting. The counter is decremented or incremented synchronously with the low-to-high transition of the clock.

When an overflow or underflow of the counter occurs, the MAX/MIN output, which is low during counting, goes high and remains high for one clock cycle. This output can be used for look-ahead carry in high-speed cascading (see Figure 1). The MAX/MIN output also initiates the ripple clock ( $\overline{RCO}$ ) output, which is normally high, goes low and remains low for the low-level portion of the clock pulse. These counters can be cascaded using  $\overline{RCO}$  (see Figure 2).

If a decade counter is preset to an illegal state or assumes an illegal state when power is applied, it returns to the normal sequence in one or two counts, as shown in the state diagrams (see Figure 3).

#### ORDERING INFORMATION

| TA             | PAC                                          | KAGE <sup>†</sup> | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |
|----------------|----------------------------------------------|-------------------|--------------------------|---------------------|
|                |                                              |                   | CD74HC190E               | CD74HC190E          |
|                | PDIP – E Tube  -55°C to 125°C SOIC – M  Tube | Tube              | CD74HC191E               | CD74HC191E          |
|                |                                              | CD74HCT191E       | CD74HCT191E              |                     |
| 5500 1- 40500  | SOIC M                                       | Tube              | CD74HC190M               | HC190M              |
| -55°C to 125°C | SOIC - IVI                                   | Tape and reel     | CD74HC190M96             | HC 190W             |
|                |                                              |                   | CD54HC190F3A             | CD54HC190F3A        |
|                | CDIP – F                                     | Tube              | CD54HC191F3A             | CD54HC191F3A        |
|                |                                              |                   | CD54HCT191F3A            | CD54HCT191F3A       |

<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



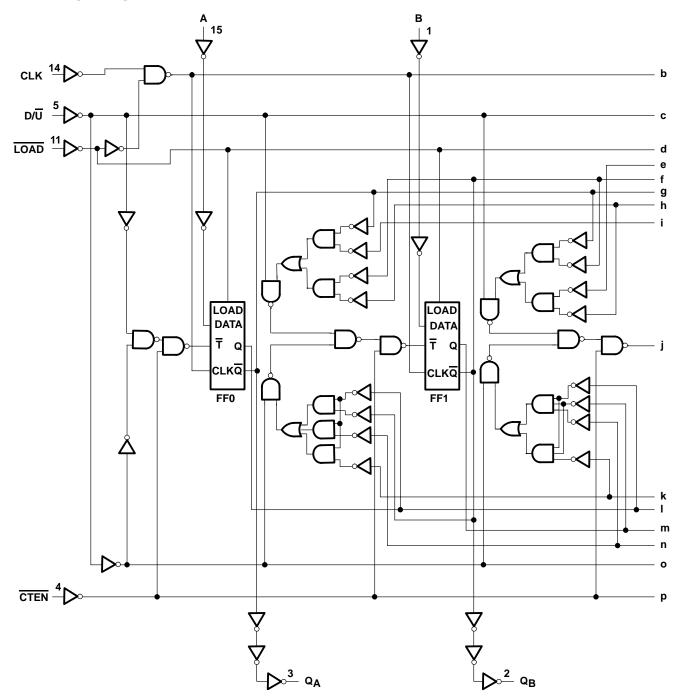
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



### CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

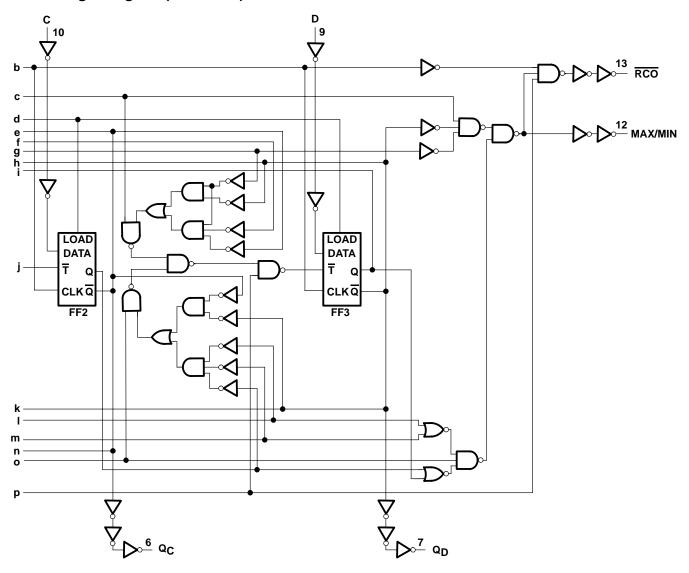
SCHS275C - MARCH 2002 - REVISED MAY 2003

### **FUNCTION TABLE**


|      | INP  | JTS |     | FUNCTION            |
|------|------|-----|-----|---------------------|
| LOAD | CTEN | D/U | CLK | FUNCTION            |
| Н    | L    | L   | ۲   | Count up            |
| Н    | L    | Н   | 丁   | Count down          |
| L    | Х    | Х   | Х   | Asynchronous preset |
| Н    | Н    | Х   | Х   | No change           |

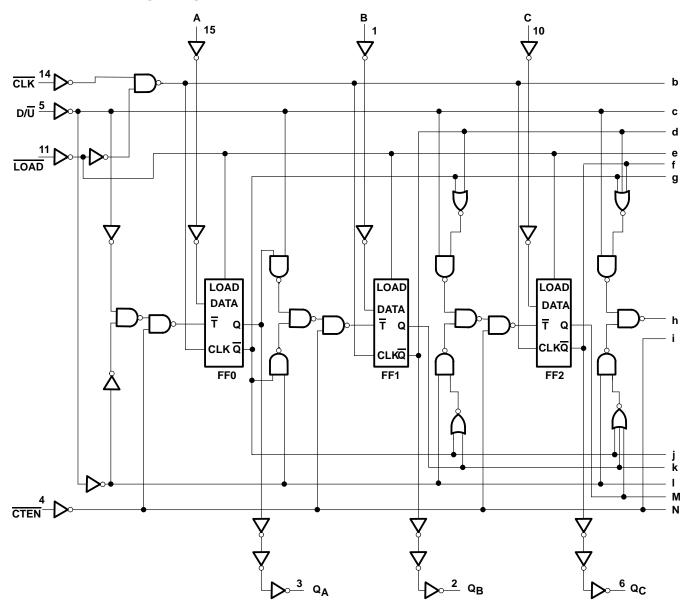
 $D/\overline{U}$  or  $\overline{CTEN}$  should be changed only when clock is high.

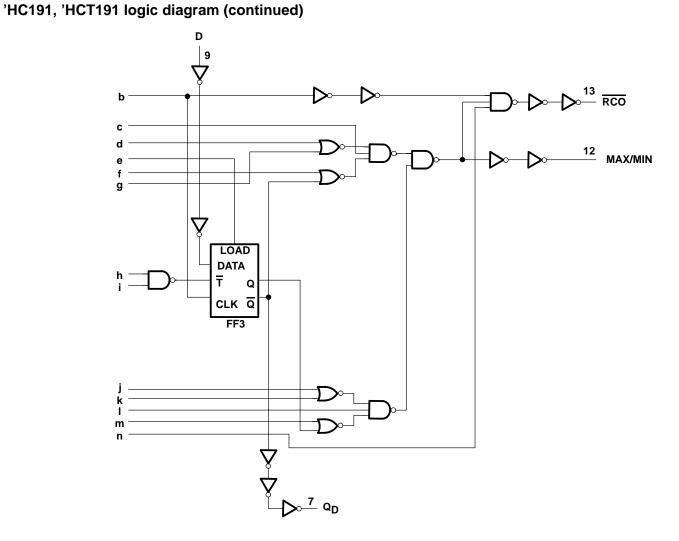



X = Don't care

### 'HC190 logic diagram

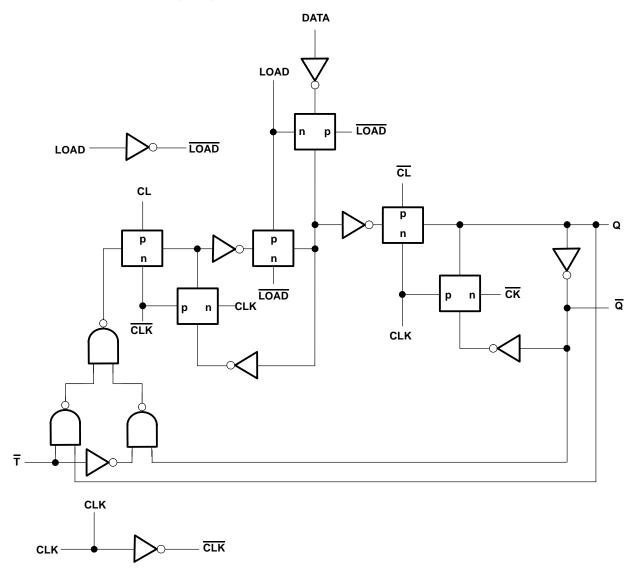






### 'HC190 logic diagram (continued)






### 'HC191, 'HCT191 logic diagram

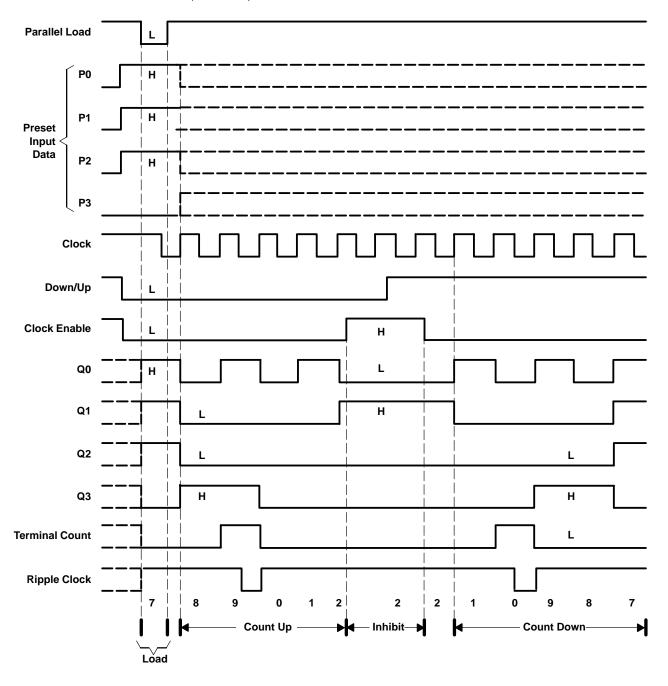






### 'HC190 and 'HC191/HCT191 flip-flop



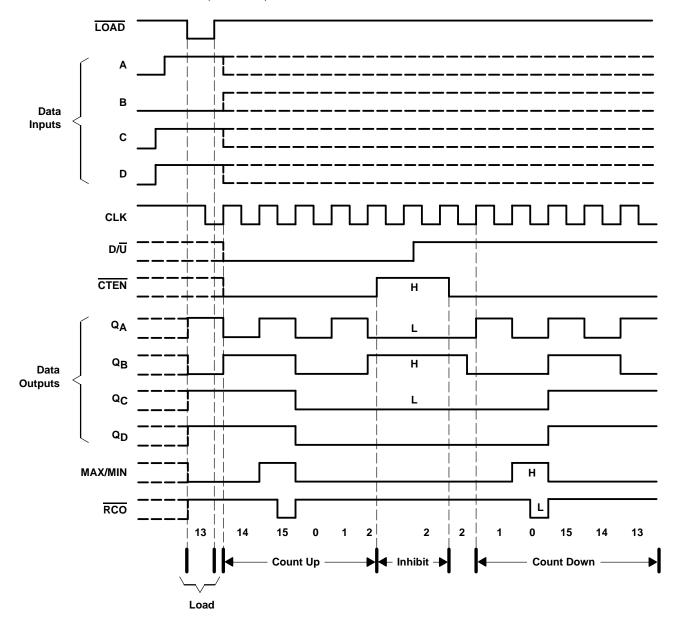

### typical load, count, and inhibit sequence for 'HC190

The following sequence is illustrated below:

1. Load (preset) to BCD 7

SCHS275C - MARCH 2002 - REVISED MAY 2003

- 2. Count up to 8, 9 (maximum), 0, 1, and 2
- 3. Inhibit
- 4. Count down to 1, 0 (minimum), 9, 8, and 7






### typical load, count, and inhibit sequence for 'HC191 and 'HCT191

The following sequence is illustrated below:

- 1. Load (preset) to binary 13
- 2. Count up to 14, 15 (maximum), 0, 1, and 2
- 3. Inhibit
- 4. Count down to 1, 0 (minimum), 15, 14, and 13





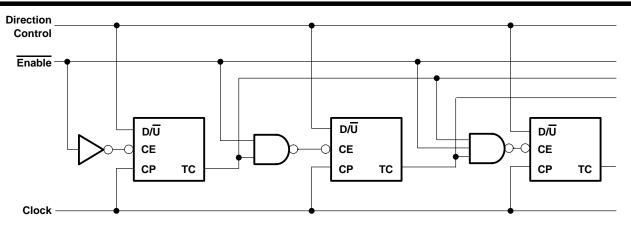



Figure 1. 'HC190 Synchronous n-Stage Counter With Parallel Gated Terminal Count

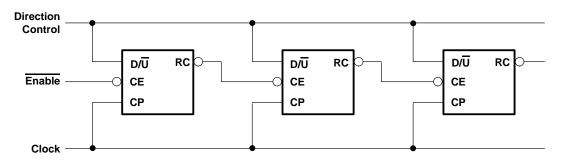



Figure 2. 'HC191, 'HCT191 Synchronous n-Stage Counter With Parallel Gated Terminal Count

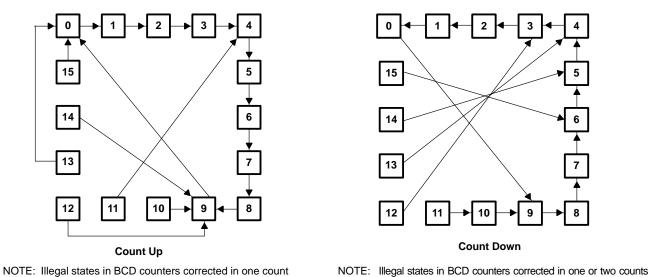



Figure 3. 'HC190 State Diagram



### CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

SCHS275C - MARCH 2002 - REVISED MAY 2003

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage range, V <sub>CC</sub>                                                                        | . $-0.5 \text{ V}$ to 7 V |
|--------------------------------------------------------------------------------------------------------------|---------------------------|
| Input clamp current, $I_{IK}$ ( $V_I < 0$ or $V_I > V_{CC}$ ) (see Note 1)                                   | ±20 mA                    |
| Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0 or V <sub>O</sub> > V <sub>CC</sub> ) (see Note 1) | ±20 mA                    |
| Continuous output drain current per output, $I_O$ ( $V_O = 0$ to $V_{CC}$ )                                  | ±35 mA                    |
| Continuous output source or sink current per output, $I_O$ ( $V_O = 0$ to $V_{CC}$ )                         | ±25 mA                    |
| Continuous current through V <sub>CC</sub> or GND                                                            | ±50 mA                    |
| Package thermal impedance, $\theta_{JA}$ (see Note 2): E package                                             | 67°C/W                    |
| M package                                                                                                    | 73°C/W                    |
| Storage temperature range, T <sub>sto</sub>                                                                  | –65°C to 150°C            |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

### recommended operating conditions for 'HC190 and 'HC191 (see Note 3)

|                |                                       |                         | T <sub>A</sub> = 1 | 25°C | T <sub>A</sub> = - |      | T <sub>A</sub> = - |      | UNIT |
|----------------|---------------------------------------|-------------------------|--------------------|------|--------------------|------|--------------------|------|------|
|                |                                       |                         | MIN                | MAX  | MIN                | MAX  | MIN                | MAX  |      |
| Vcc            | Supply voltage                        |                         | 2                  | 6    | 2                  | 6    | 2                  | 6    | V    |
|                |                                       | V <sub>CC</sub> = 2 V   | 1.5                |      | 1.5                |      | 1.5                |      |      |
| VIH            | High-level input voltage              | V <sub>CC</sub> = 4.5 V | 3.15               |      | 3.15               |      | 3.15               |      | V    |
|                |                                       | V <sub>CC</sub> = 6 V   | 4.2                |      | 4.2                |      | 4.2                |      |      |
|                |                                       | V <sub>CC</sub> = 2 V   |                    | 0.5  |                    | 0.5  |                    | 0.5  |      |
| VIL            | Low-level input voltage               | V <sub>CC</sub> = 4.5 V |                    | 1.35 |                    | 1.35 |                    | 1.35 | V    |
|                |                                       | V <sub>CC</sub> = 6 V   |                    | 1.8  |                    | 1.8  |                    | 1.8  |      |
| ٧ı             | Input voltage                         |                         | 0                  | VCC  | 0                  | VCC  | 0                  | VCC  | V    |
| ۷o             | Output voltage                        |                         | 0                  | VCC  | 0                  | VCC  | 0                  | VCC  | V    |
|                |                                       | V <sub>CC</sub> = 2 V   |                    | 1000 |                    | 1000 |                    | 1000 |      |
| t <sub>t</sub> | Input transition (rise and fall) time | V <sub>CC</sub> = 4.5 V |                    | 500  |                    | 500  |                    | 500  | ns   |
|                |                                       | V <sub>CC</sub> = 6 V   |                    | 400  |                    | 400  |                    | 400  |      |

NOTE 3: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

### recommended operating conditions for 'HCT191 (see Note 4)

|                |                                       | T <sub>A</sub> = 2 | 25°C | T <sub>A</sub> = - |     | T <sub>A</sub> = - |     | UNIT |
|----------------|---------------------------------------|--------------------|------|--------------------|-----|--------------------|-----|------|
|                |                                       | MIN                | MAX  | MIN                | MAX | MIN                | MAX |      |
| Vcc            | Supply voltage                        | 4.5                | 5.5  | 4.5                | 5.5 | 4.5                | 5.5 | V    |
| VIH            | High-level input voltage              | 2                  |      | 2                  |     | 2                  |     | V    |
| VIL            | Low-level input voltage               |                    | 0.8  |                    | 0.8 |                    | 0.8 | V    |
| VI             | Input voltage                         |                    | VCC  |                    | VCC |                    | VCC | V    |
| Vo             | Output voltage                        |                    | VCC  |                    | VCC |                    | VCC | V    |
| t <sub>t</sub> | Input transition (rise and fall) time |                    | 500  |                    | 500 |                    | 500 | ns   |

NOTE 4: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.



NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>2.</sup> The package thermal impedance is calculated in accordance with JESD 51-7.

### 'HC190, 'HC191

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER       | TEST C                            | ONDITIONS                  | VCC   | T <sub>A</sub> = | 25°C | T <sub>A</sub> = −55°C<br>TO 125°C |     | T <sub>A</sub> = -40°C<br>TO 85°C |      | UNIT |
|-----------------|-----------------------------------|----------------------------|-------|------------------|------|------------------------------------|-----|-----------------------------------|------|------|
|                 |                                   |                            |       | MIN              | MAX  | MIN                                | MAX | MIN                               | MAX  |      |
|                 |                                   |                            | 2 V   | 1.9              |      | 1.9                                |     | 1.9                               |      |      |
|                 |                                   | $I_{OH} = -20 \mu A$       | 4.5 V | 4.4              |      | 4.4                                |     | 4.4                               |      |      |
| VOH             | VI = VIH or VIL                   |                            | 6 V   | 5.9              |      | 5.9                                |     | 5.9                               |      | V    |
|                 |                                   | $I_{OH} = -4 \text{ mA}$   | 4.5 V | 3.98             |      | 3.7                                |     | 3.84                              |      |      |
|                 |                                   | $I_{OH} = -5.2 \text{ mA}$ | 6 V   | 5.48             |      | 5.2                                |     | 5.34                              |      |      |
|                 |                                   |                            | 2 V   |                  | 0.1  |                                    | 0.1 |                                   | 0.1  |      |
|                 |                                   | $I_{OL} = 20 \mu A$        | 4.5 V |                  | 0.1  |                                    | 0.1 |                                   | 0.1  |      |
| $V_{OL}$        | $V_I = V_{IH} \text{ or } V_{IL}$ |                            | 6 V   |                  | 0.1  |                                    | 0.1 |                                   | 0.1  | V    |
|                 |                                   | $I_{OL} = 4 \text{ mA}$    | 4.5 V |                  | 0.26 |                                    | 0.4 |                                   | 0.33 |      |
|                 |                                   | $I_{OL} = 5.2 \text{ mA}$  | 6 V   |                  | 0.26 |                                    | 0.4 |                                   | 0.33 |      |
| lį              | $V_I = V_{CC}$ or 0               | ·                          | 6 V   |                  | ±0.1 |                                    | ±1  |                                   | ±1   | μА   |
| l <sub>CC</sub> | $V_I = V_{CC}$ or 0,              | I <sub>O</sub> = 0         | 6 V   |                  | 8    |                                    | 160 |                                   | 80   | μА   |
| Ci              |                                   |                            |       |                  | 10   |                                    | 10  |                                   | 10   | pF   |

## 'HCT191 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER          | TEST CONI                                             | DITIONS                  | Vcc            | Т,   | դ = 25°C | ;    | T <sub>A</sub> = - |     | T <sub>A</sub> = -40°C<br>TO 85°C |      | UNIT |
|--------------------|-------------------------------------------------------|--------------------------|----------------|------|----------|------|--------------------|-----|-----------------------------------|------|------|
|                    |                                                       |                          |                | MIN  | TYP      | MAX  | MIN                | MAX | MIN                               | MAX  |      |
| Vou                | VI = VIH or VIL                                       | $I_{OH} = -20 \mu A$     | 4.5 V          | 4.4  |          |      | 4.4                |     | 4.4                               |      | ٧    |
| VOH                | AI = AIH OL AIL                                       | $I_{OH} = -4 \text{ mA}$ | 4.5 V          | 3.98 |          |      | 3.7                |     | 3.84                              |      | V    |
| Voi                | VI = VIH or VIL                                       | I <sub>OL</sub> = 20 μA  | 4.5 V          |      |          | 0.1  |                    | 0.1 |                                   | 0.1  | ٧    |
| VOL                | AI = AIH OL AIL                                       | I <sub>OL</sub> = 4 mA   | 4.5 V          |      |          | 0.26 |                    | 0.4 |                                   | 0.33 | V    |
| lį                 | $V_I = V_{CC}$ to GND                                 |                          | 5.5 V          |      |          | ±0.1 |                    | ±1  |                                   | ±1   | μΑ   |
| Icc                | $V_I = V_{CC}$ or 0,                                  | I <sub>O</sub> = 0       | 5.5 V          |      |          | 8    |                    | 160 |                                   | 80   | μΑ   |
| ∆l <sub>CC</sub> † | One input at V <sub>CC</sub> – Other inputs at 0 or 1 | 2.1 V,<br>VCC            | 4.5 V to 5.5 V |      | 100      | 360  |                    | 490 |                                   | 450  | μА   |
| C <sub>i</sub>     |                                                       |                          |                |      |          | 10   |                    | 10  |                                   | 10   | pF   |

<sup>†</sup> Additional quiescent supply current per input pin, TTL inputs high, 1 unit load

### **HCT INPUT LOADING TABLE**

| INPUTS          | UNIT LOADS |
|-----------------|------------|
| A-D             | 0.4        |
| CLK             | 1.5        |
| LOAD            | 1.5        |
| D/ <del>U</del> | 1.2        |
| CTEN            | 1.5        |

Unit load is  $\Delta I_{CC}$  limit specified in electrical characteristics table, (e.g.,  $360\,\mu\text{A}$  max at  $25^{\circ}\text{C}$ ).



### CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL SCHS275C - MARCH 2002 - REVISED MAY 2003

### 'HC190, 'HC191 timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 4)

|                  |                  |                               | Vcc   | T <sub>A</sub> = | 25°C | T <sub>A</sub> = - | -55°C<br>25°C | T <sub>A</sub> = - | -40°C<br>5°C | UNIT |
|------------------|------------------|-------------------------------|-------|------------------|------|--------------------|---------------|--------------------|--------------|------|
|                  |                  |                               |       | MIN              | MAX  | MIN                | MAX           | MIN                | MAX          |      |
|                  |                  |                               | 2 V   |                  | 6    |                    | 4             |                    | 5            |      |
| fclock           | Clock frequency† |                               | 4.5 V |                  | 30   |                    | 20            |                    | 25           | MHz  |
|                  |                  |                               | 6 V   |                  | 35   |                    | 23            |                    | 29           |      |
|                  |                  |                               | 2 V   | 80               |      | 120                |               | 100                |              |      |
|                  |                  | LOAD low                      | 4.5 V | 16               |      | 24                 |               | 20                 |              |      |
| ۱.               | Pulse duration   |                               | 6 V   | 14               |      | 20                 |               | 17                 |              | ns   |
| t <sub>W</sub>   | Fuise duration   |                               | 2 V   | 100              |      | 150                |               | 125                |              | 115  |
|                  |                  | CLK high or low               | 4.5 V | 20               |      | 30                 |               | 25                 |              |      |
|                  |                  |                               | 6 V   | 17               |      | 26                 |               | 21                 |              |      |
|                  |                  |                               | 2 V   | 60               |      | 90                 |               | 75                 |              |      |
|                  |                  | Data before LOAD↑             | 4.5 V | 12               |      | 18                 |               | 15                 |              |      |
|                  |                  |                               | 6 V   | 10               |      | 15                 |               | 13                 |              |      |
|                  |                  |                               | 2 V   | 60               |      | 90                 |               | 75                 |              |      |
| t <sub>su</sub>  | Setup time       | CTEN before CLK↑              | 4.5 V | 12               |      | 18                 |               | 15                 |              | ns   |
|                  |                  |                               | 6 V   | 10               |      | 15                 |               | 13                 |              |      |
|                  |                  |                               | 2 V   | 90               |      | 135                |               | 115                |              |      |
|                  |                  | D/ <del>U</del> before CLK↑   | 4.5 V | 18               |      | 27                 |               | 23                 |              |      |
|                  |                  |                               | 6 V   | 15               |      | 23                 |               | 20                 |              |      |
|                  |                  |                               | 2 V   | 2                |      | 2                  |               | 2                  |              |      |
|                  |                  | Data before <del>LOAD</del> ↑ | 4.5 V | 2                |      | 2                  |               | 2                  |              |      |
|                  |                  |                               | 6 V   | 2                |      | 2                  |               | 2                  |              |      |
|                  |                  |                               | 2 V   | 2                |      | 2                  |               | 2                  |              |      |
| th               | Hold time        | CTEN before CLK↑              | 4.5 V | 2                |      | 2                  |               | 2                  |              | ns   |
|                  |                  |                               | 6 V   | 2                |      | 2                  |               | 2                  |              |      |
|                  |                  |                               | 2 V   | 0                |      | 0                  |               | 0                  |              |      |
|                  |                  | D/U before CLK↑               | 4.5 V | 0                |      | 0                  |               | 0                  |              |      |
|                  |                  |                               | 6 V   | 0                |      | 0                  |               | 0                  |              |      |
|                  |                  |                               | 2 V   | 60               |      | 90                 |               | 75                 |              |      |
| t <sub>rec</sub> | Recovery time    | LOAD inactive before CLK↑     | 4.5 V | 12               |      | 18                 |               | 15                 |              | ns   |
|                  | •                |                               | 6 V   | 10               |      | 15                 |               | 13                 |              |      |

<sup>†</sup> Applies to noncascaded operation only. With cascaded counters, clock-to-terminal count propagation delays, CTEN-to-clock setup times, and CTEN-to-clock hold times determine maximum clock frequency. For example, with these HC devices:

$$f_{max}(CLK) = \frac{1}{CLK\text{-to-MAX/MIN propagation delay} + \frac{1}{CTEN}\text{-to-CLK setup time} + \frac{1}{CTEN}\text{-to-CLK hold time}} = \frac{1}{42 + 12 + 2} \approx 18 \text{ MHz}$$



'HC190, 'HC191

### switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 4)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT)  | LOAD<br>CAPACITANCE    | Vcс   | T,  | A = 25°C | ;   | T <sub>A</sub> = - | -55°C<br>25°C | T <sub>A</sub> = - | -40°C<br>5°C | UNIT |
|------------------|-----------------|-----------------|------------------------|-------|-----|----------|-----|--------------------|---------------|--------------------|--------------|------|
|                  | (1141 01)       | (0011 01)       | CALACITANCE            |       | MIN | TYP      | MAX | MIN                | MAX           | MIN                | MAX          |      |
|                  |                 |                 |                        | 2 V   | 6   |          |     | 4                  |               | 5                  |              |      |
| fmax             |                 |                 |                        | 4.5 V | 30  |          |     | 20                 |               | 25                 |              | MHz  |
|                  |                 |                 |                        | 6 V   | 35  |          |     | 23                 |               | 29                 |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 195 |                    | 295           |                    | 245          |      |
|                  | LOAD            | Q               | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 39  |                    | 59            |                    | 49           |      |
|                  | LOAD            |                 |                        | 6 V   |     |          | 33  |                    | 50            |                    | 42           |      |
|                  |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 16       |     |                    |               |                    |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 175 |                    | 265           |                    | 220          |      |
|                  | A, B, C,        | Q               | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 35  |                    | 53            |                    | 44           |      |
|                  | or D            |                 |                        | 6 V   |     |          | 30  |                    | 45            |                    | 37           |      |
|                  |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 14       |     |                    |               |                    |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 170 |                    | 255           |                    | 215          |      |
|                  | CLK             | Q               | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 34  |                    | 51            |                    | 43           |      |
|                  | OLK             |                 |                        | 6 V   |     |          | 29  |                    | 43            |                    | 37           |      |
|                  |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 14       |     |                    |               |                    |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 125 |                    | 190           |                    | 155          |      |
|                  | CLK             | RCO             | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 25  |                    | 38            |                    | 31           |      |
|                  | OLIK            | 1.00            |                        | 6 V   |     |          | 21  |                    | 32            |                    | 26           |      |
| t <sub>mad</sub> |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 10       |     |                    |               |                    |              | ns   |
| t <sub>pd</sub>  |                 |                 |                        | 2 V   |     |          | 210 |                    | 315           |                    | 265          | 113  |
|                  | CLK             | MAX/MIN         | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 42  |                    | 63            |                    | 53           |      |
|                  | OLIV            | IVII O VIVIII V |                        | 6 V   |     |          | 36  |                    | 54            |                    | 45           |      |
|                  |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 18       |     |                    |               |                    |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 150 |                    | 225           |                    | 190          |      |
|                  | D/ <del>U</del> | RCO             | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 30  |                    | 45            |                    | 38           |      |
|                  | D/O             | 1.00            |                        | 6 V   |     |          | 26  |                    | 38            |                    | 33           |      |
|                  |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 12       |     |                    |               |                    |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 165 |                    | 250           |                    | 205          |      |
|                  | D/ <del>U</del> | MAX/MIN         | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 33  |                    | 50            |                    | 41           |      |
|                  | 5,0             | IVII O VIVIII V |                        | 6 V   |     |          | 28  |                    | 43            |                    | 35           |      |
|                  |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 13       |     |                    |               |                    |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 125 |                    | 190           |                    | 155          |      |
|                  | CTEN            | RCO             | $C_L = 50 pF$          | 4.5 V |     |          | 25  |                    | 38            |                    | 31           |      |
|                  | 0.2.4           |                 |                        | 6 V   |     |          | 21  |                    | 32            |                    | 26           |      |
|                  |                 |                 | C <sub>L</sub> = 15 pF | 5 V   |     | 10       |     |                    |               |                    |              |      |
|                  |                 |                 |                        | 2 V   |     |          | 75  |                    | 110           |                    | 95           |      |
| t <sub>t</sub>   |                 | Any             | C <sub>L</sub> = 50 pF | 4.5 V |     |          | 15  |                    | 22            |                    | 19           | ns   |
|                  |                 |                 |                        | 6 V   |     |          | 13  |                    | 19            |                    | 16           |      |



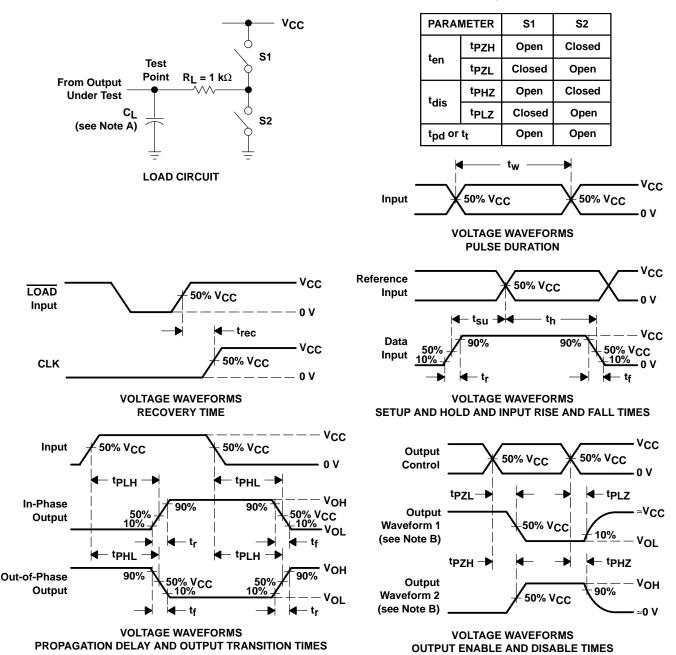
### 'HCT191

### timing requirements over recommended operating free-air temperature range $V_{CC}$ = 4.5 V (unless otherwise noted) (see Figure 5)

|                  |                 |                             | T <sub>A</sub> = | 25°C | T <sub>A</sub> = - |     | T <sub>A</sub> = - |     | UNIT |
|------------------|-----------------|-----------------------------|------------------|------|--------------------|-----|--------------------|-----|------|
|                  |                 |                             | MIN              | MAX  | MIN                | MAX | MIN                | MAX |      |
| fclock           | Clock frequency |                             |                  | 30   |                    | 20  |                    | 25  | MHz  |
|                  | Pulse duration  | LOAD low                    | 16               |      | 24                 |     | 20                 |     | no   |
| t <sub>W</sub>   | ruise duration  | CLK high or low             | 20               |      | 30                 |     | 25                 |     | ns   |
|                  |                 | Data before LOAD↑           | 12               |      | 18                 |     | 15                 |     |      |
| t <sub>su</sub>  | Setup time      | CTEN before CLK↑            | 12               |      | 18                 |     | 15                 |     | ns   |
|                  |                 | D/U before CLK↑             | 18               |      | 27                 |     | 23                 |     |      |
|                  |                 | Data before LOAD↑           | 2                |      | 2                  |     | 2                  |     |      |
| th               | Hold time       | CTEN before CLK↑            | 2                |      | 2                  |     | 2                  |     | ns   |
|                  |                 | D/ <del>U</del> before CLK↑ | 0                |      | 0                  |     | 0                  |     |      |
| t <sub>rec</sub> | Recovery time   | LOAD inactive before CLK↑   | 12               |      | 18                 |     | 15                 |     | ns   |

### 'HCT191

### switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5)


| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | LOAD<br>CAPACITANCE     | Vcc   | T,  | գ = 25°C | ;   | T <sub>A</sub> = - |     | T <sub>A</sub> = - |     | UNIT |
|------------------|-----------------|----------------|-------------------------|-------|-----|----------|-----|--------------------|-----|--------------------|-----|------|
|                  | (INFUT)         | (001F01)       | CAPACITANCE             |       | MIN | TYP      | MAX | MIN                | MAX | MIN                | MAX |      |
| f <sub>max</sub> |                 |                |                         | 4.5 V | 30  |          |     | 20                 |     | 25                 |     | MHz  |
|                  | LOAD            | Q              | C <sub>L</sub> = 50 pF  | 4.5 V |     |          | 40  |                    | 60  |                    | 50  |      |
|                  | LOAD            | α              | C <sub>L</sub> = 15 pF  | 5 V   |     | 17       |     |                    |     |                    |     |      |
|                  | A, B, C,        | Q              | C <sub>L</sub> = 50 pF  | 4.5 V |     |          | 38  |                    | 57  |                    | 48  |      |
|                  | or D            | 3              | C <sub>L</sub> = 15 pF  | 5 V   |     | 16       |     |                    |     |                    |     |      |
|                  | CLK             | RCO            | $C_{L} = 50  pF$        | 4.5 V |     |          | 35  |                    | 53  |                    | 44  |      |
|                  | OLIX            | RCO            | C <sub>L</sub> = 15 pF  | 5 V   |     | 14       |     |                    |     |                    |     |      |
|                  | CLK             | Q              | $C_{L} = 50 \text{ pF}$ | 4.5 V |     |          | 27  |                    | 41  |                    | 34  |      |
| <b>l</b>         | OLK             | 3              | C <sub>L</sub> = 15 pF  | 5 V   |     | 11       |     |                    |     |                    |     | ns   |
| <sup>t</sup> pd  | CLK             | MAX/MIN        | $C_L = 50 pF$           | 4.5 V |     |          | 42  |                    | 63  |                    | 53  | 115  |
|                  | OLK             | IVIAA/IVIIIN   | C <sub>L</sub> = 15 pF  | 5 V   |     | 18       |     |                    |     |                    |     |      |
|                  | D/Ū             | RCO            | $C_L = 50 pF$           | 4.5 V |     |          | 30  |                    | 45  |                    | 38  |      |
|                  | D/U             | RCO            | C <sub>L</sub> = 15 pF  | 5 V   |     | 12       |     |                    |     |                    |     |      |
|                  | D/ <del>U</del> | MAX/MIN        | $C_L = 50 pF$           | 4.5 V |     |          | 38  |                    | 57  |                    | 48  |      |
|                  | D/U             | IVIAAAVIVIIIN  | C <sub>L</sub> = 15 pF  | 5 V   |     | 16       |     |                    |     |                    |     |      |
|                  | CTEN            | RCO            | C <sub>L</sub> = 50 pF  | 4.5 V |     |          | 27  |                    | 41  |                    | 34  |      |
|                  | CIEN            | RCO            | C <sub>L</sub> = 15 pF  | 5 V   |     | 11       | ·   |                    | ·   |                    |     |      |
| t <sub>t</sub>   |                 | Any            | C <sub>L</sub> = 50 pF  | 4.5 V |     |          | 15  |                    | 22  |                    | 19  | ns   |

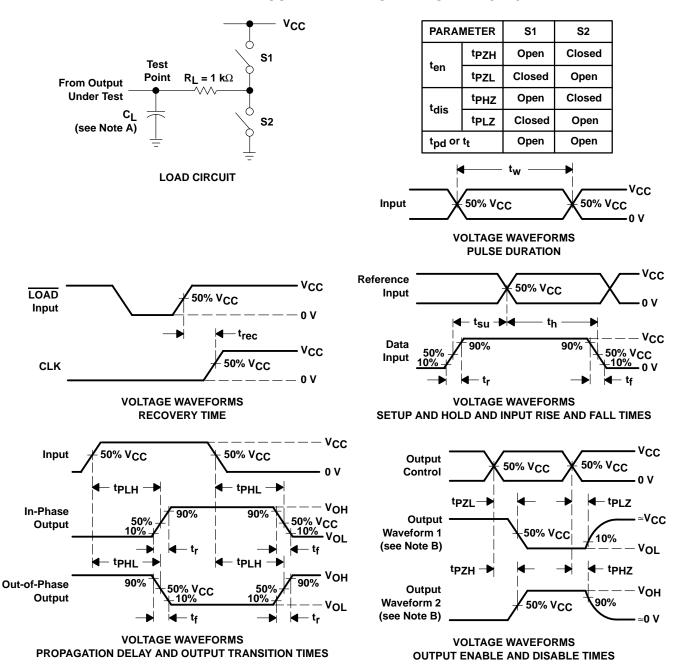
# CD54HC190, CD74HC190 CD54HC191, CD74HC191, CD54HCT191, CD74HCT191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL SCHS275C - MARCH 2002 - REVISED MAY 2003

### operating characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25^{\circ}\text{C}$

| PARAMETER       |                               | TYP     | UNIT |    |
|-----------------|-------------------------------|---------|------|----|
| C <sub>pd</sub> | Power dissipation capacitance | 'HC190  | 59   | pF |
|                 |                               | 'HC191  | 55   |    |
|                 |                               | 'HCT191 | 68   |    |

### PARAMETER MEASUREMENT INFORMATION - 'HC190, 'HC191



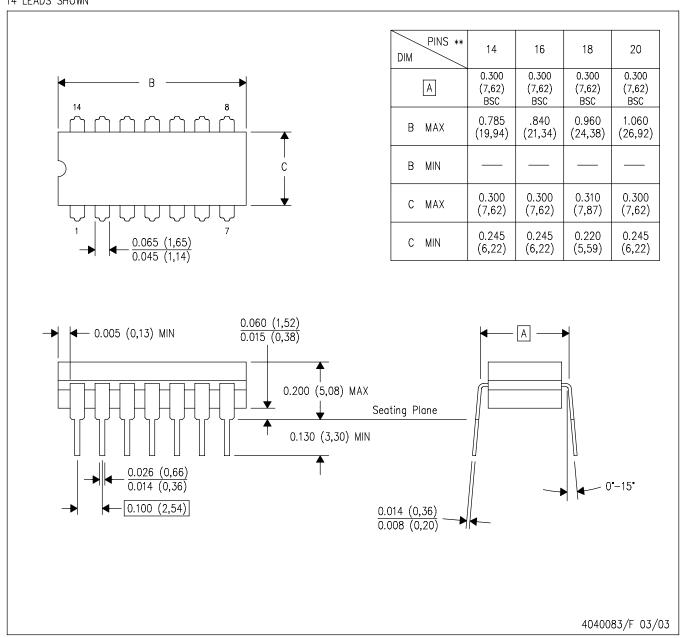

NOTES: A. C<sub>L</sub> includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz,  $Z_O = 50 \ \Omega$ ,  $t_f = 6 \ ns$ ,  $t_f = 6 \ ns$ .
- D. For clock inputs,  $f_{\text{max}}$  is measured with the input duty cycle at 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. tpl 7 and tpH7 are the same as tdis.
- G. tpzL and tpzH are the same as ten.
- H. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms



#### PARAMETER MEASUREMENT INFORMATION – 'HCT191



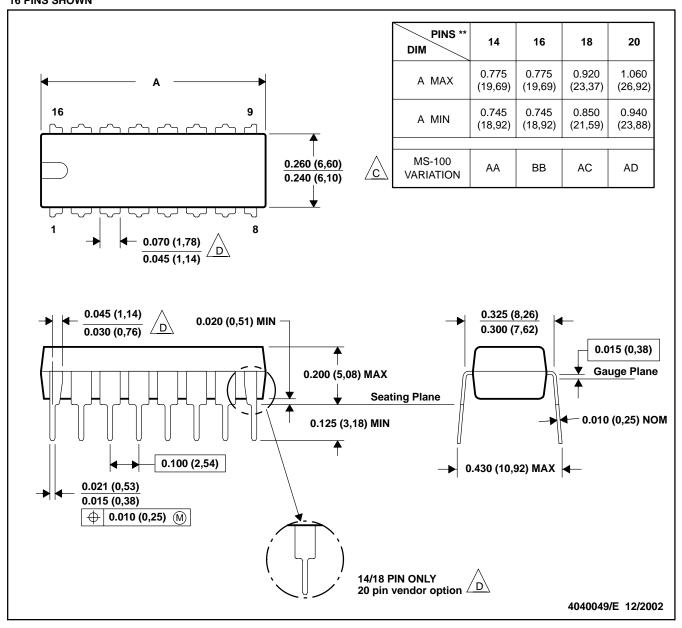

- NOTES: A. C<sub>1</sub> includes probe and test-fixture capacitance.
  - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz,  $Z_{\Omega}$  = 50  $\Omega$ ,  $t_r$  = 6 ns,  $t_f$  = 6 ns.
  - D. For clock inputs, f<sub>max</sub> is measured with the input duty cycle at 50%.
  - E. The outputs are measured one at a time with one input transition per measurement.
  - F. tpLz and tpHz are the same as tdis.
  - G. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
  - H. tplH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms



### 14 LEADS SHOWN




NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

### N (R-PDIP-T\*\*)

### 16 PINS SHOWN

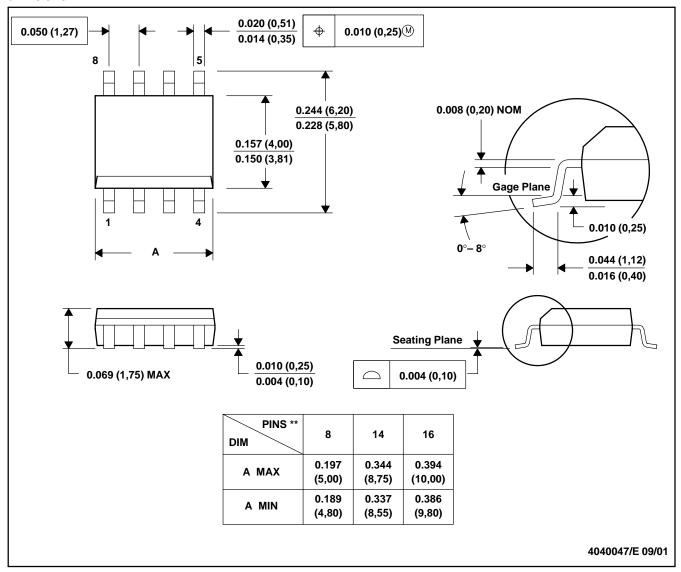
### PLASTIC DUAL-IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).


The 20 pin end lead shoulder width is a vendor option, either half or full width.

1

### D (R-PDSO-G\*\*)

### PLASTIC SMALL-OUTLINE PACKAGE

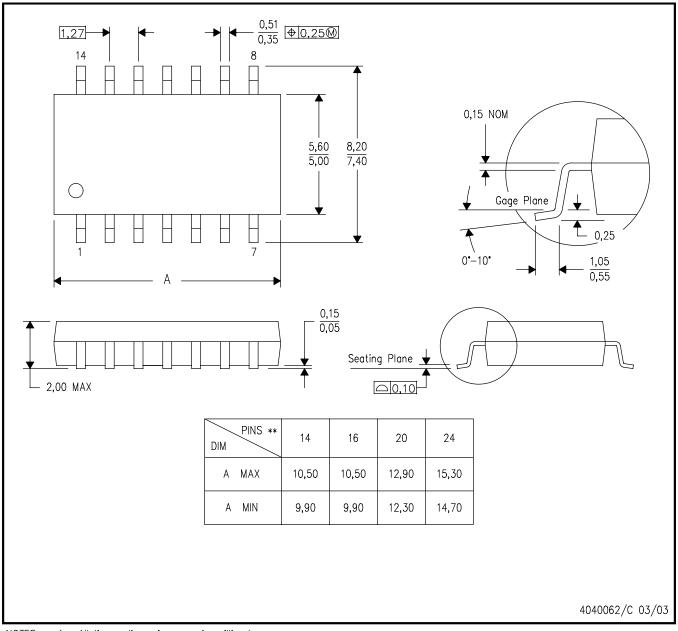
### **8 PINS SHOWN**



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-012

### **MECHANICAL DATA**

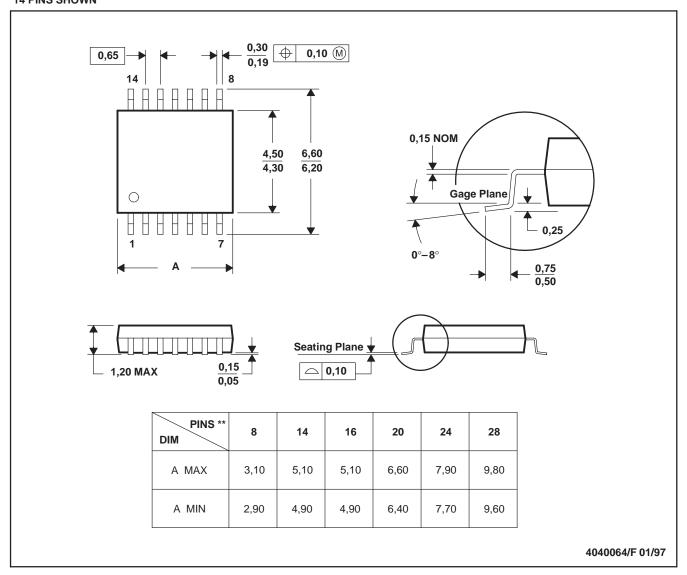
### NS (R-PDSO-G\*\*)

### 14-PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



### PW (R-PDSO-G\*\*)

### 14 PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated