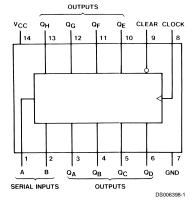


DM74LS164

8-Bit Serial In/Parallel Out Shift Register

General Description

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup and hold time requirements will be entered. Clocking occurs


on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Features

- Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Asynchronous clear
- Typical clock frequency 36 MHz
- Typical power dissipation 80 mW

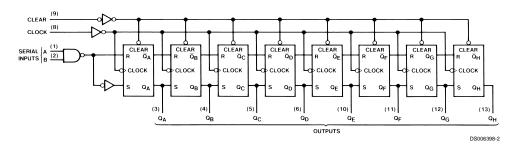
Connection Diagram

Dual-In-Line Package

Order Number 54LS164DMQB, 54LS164FMQB, 54LS164LMQB, DM54LS164J, DM54LS164W, DM74LS164M or DM74LS164N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

Inputs				Outputs				
Clear	Clock	Α	В	Q_A	Q _B		Q _H	
L	Х	Х	Х	L	L		L	
Н	L	Х	Χ	Q_{A0}	Q_{B0}		Q_{H0}	
Н	1	Н	Н	Н	Q_{An}		Q_Gn	
Н	1	L	Χ	L	Q_{An}		Q_Gn	
Н	1	X	L	L	Q_{An}		Q_Gn	


H = High Level (steady state), L = Low Level (steady state)

X = Don't Care (any input, including transitions)

 \uparrow = Transition from low to high level Q_{A0} , Q_{B0} , Q_{H0} = The level of Q_{A} , Q_{B} , or Q_{H} , respectively, before the indicated steady-state input conditions were established.

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent \uparrow transition of the clock; indicates a one-bit shift.

Logic Diagram

Absolute Maximum Ratings (Note 1)

Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter		1	DM54LS164			DM74LS164		
			Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage		2			2			V
V _{IL}	Low Level Input Voltage				0.7			0.8	V
I _{OH}	High Level Output Current				-0.4			-0.4	mA
I _{OL}	Low Level Output Current				4			8	mA
f _{CLK}	Clock Frequency (Note 5)		0		25	0		25	MHz
t _W	Pulse Width	Clock	20			20			ns
	(Note 5)	Clear	20			20			
t _{su}	Data Setup Time (Note 5)		17			17			ns
t _H	Data Hold Time (Note 5)		5			5			ns
t _{REL}	Clear Release Time (Note 5)		30			30			ns
T _A	Free Air Operating	Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" tables will define the conditions for actual device operation.

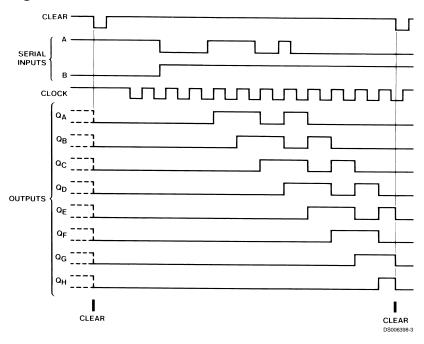
Electrical Characteristics

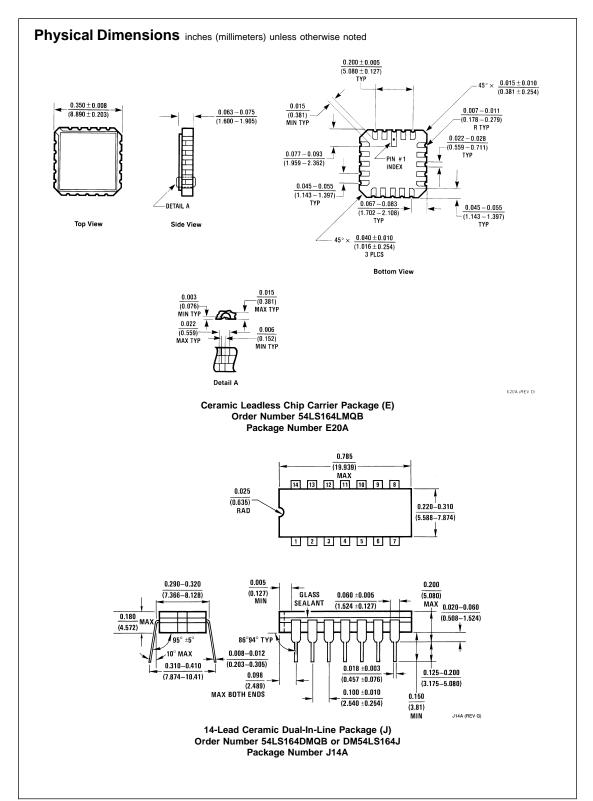
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA			(11010 2)	-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	DM54		0.25	0.4	
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	V _{CC} = Max, V _I = 7V	1			0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I = 0.4V				-0.4	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{cc}	Supply Current	V _{CC} = Max (Note 4)	•		16	27	mA

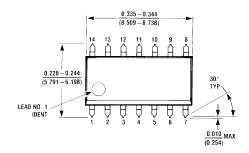
Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

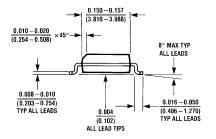
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

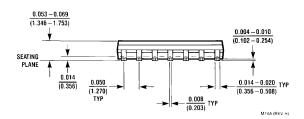

Note 4: I_{CC} is measured with all outputs open, the SERIAL input grounded, the CLOCK input at 2.4V, and a momentary ground, then 4.5V, applied to the CLEAR input.

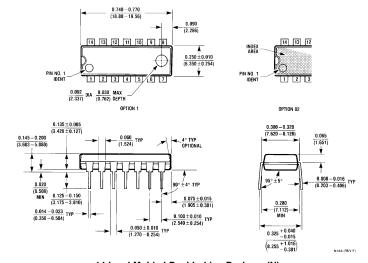

Note 5: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

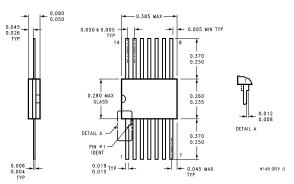
Switching Characteristics at V_{CC} = 5V and T_A = 25°C


	Parameter	From (Input) To (Output)					
Symbol			C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25				MHz
t _{PLH}	Propagation Delay Time	Clock to		27		30	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Clock to		32		40	ns
	High to Low Level Output	Output					
t _{PHL}	Propagation Delay Time	Clear to		36		45	ns
	High to Low Level Output	Output					


Timing Diagram







14-Lead Small Outline Molded Package (M) Order Number DM74LS164M Package Number M14A

14-Lead Molded Dual-In-Line Package (N) Order Number DM74LS164N Package Number N14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number 54LS164FMQB or DM54LS164W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com