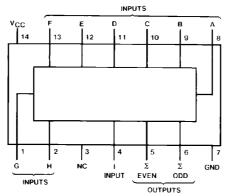
DM54S280/DM74S280 9-Bit Parity Generators/Checkers

General Description

These universal, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry, and feature odd/even outputs to facilitate operation of either odd or even parity applications. The word-length capability is easily expanded by cascading.

The S280 can be used to upgrade the performance of most systems utilizing the DM74180 parity generator/checker. Although the S280 is implemented without expander inputs, the corresponding function is provided by the availability of all input at pin 4, and no internal connection at pin 3. This permits the S280 to be substituted for the 180 in existing designs to produce an identical function, even if S280's are mixed with existing 180's.


Input buffers are provided so that each input represents only one normal 74S load, and full fan-out to 10 normal Series 74S loads is available from each of the outputs at low logic levels. A fan-out to 20 normal Series 74S loads is provided at high logic levels, to facilitate connection of unused inputs to used inputs.

Features

- Generates either odd or even parity for nine data lines
- Cascadable for N-bits
- Can be used to upgrade existing systems using MSI parity circuits
- Typical data-to-output delay—14 ns

Connection Diagram

Dual-In-Line Package

TL/F/6483-1

Order Number DM54S280J, DM54S280W, DM74S280M or DM74S280N See NS Package Number J14A, M14A, N14A or W14B

Function Table

Number of Inputs (A	Outputs				
Thru I) that are High	$\Sigma \; \text{Even}$	$\Sigma \; \text{Odd}$			
0, 2, 4, 6, 8	Η	L			
1, 3, 5, 7, 9	L	Н			

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range
DM54S -55°C to + 125°C

DM74S 0°C to +70°C Storage Temperature Range -65°C to +150°C

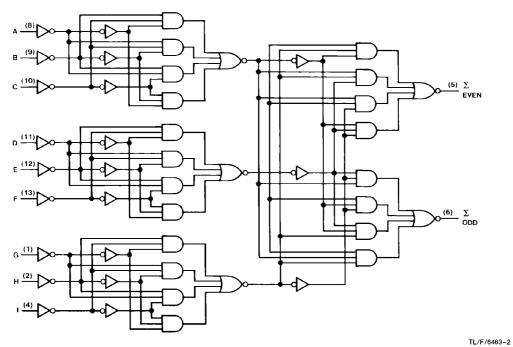
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S280			DM74S280			Units
		Min	Nom	Max	Min	Nom	Max	Oints
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.8			0.8	V
loh	High Level Output Current			-1			-1	mA
loL	Low Level Output Current			20			20	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I =	- 18 mA			-1.2	٧
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH}$ $V_{IL} = Max, V_{IH}$	•	2.7	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{Ol}$ $V_{IH} = Min, V_{IL}$	-			0.5	V
lį	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I$	= 5.5V			1	mA
l _{іН}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				50	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.5V$				-2	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	DM54	-40		-100	mA
			DM74	-40		-100	111/4
lcc	Supply Current	V _{CC} Max (Note 3)			67	105	mA


Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: $I_{\mbox{\footnotesize{CC}}}$ is measured with all inputs grounded and all outputs open.

Symbol	Parameter	From (Input) To (Output)	R _L = 280Ω C _L = 15 pF		$R_L = 280\Omega$ $C_L = 50 pF$		Units
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Σ Even		21		24	ns
^t PHL	Propagation Delay Time High to Low Level Output	Data to Σ Even		18		21	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Σ Odd		21		24	ns
tPHL	Propagation Delay Time High to Low Level Output	Data to Σ Odd		18		21	ns

Logic Diagram

Typical Applications

Three S280's can be used to implement a 25-line parity generator/checker. This arrangement will provide parity in typically 25 ns. (See *Figure 1*.)

As an alternative, the outputs of two or three parity generators/checkers can be decoded with a 2-input (S86) or

3-input (S135) exclusive-OR gate for 18 or 27-line parity applications

Longer word lengths can be implemented by cascading S280's. As shown in Figure 2, parity can be generated for word lengths up to 81 bits in typically 25 ns.

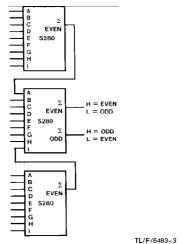
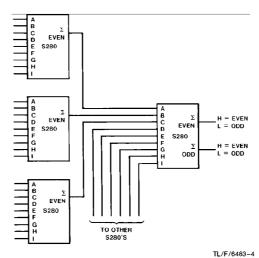
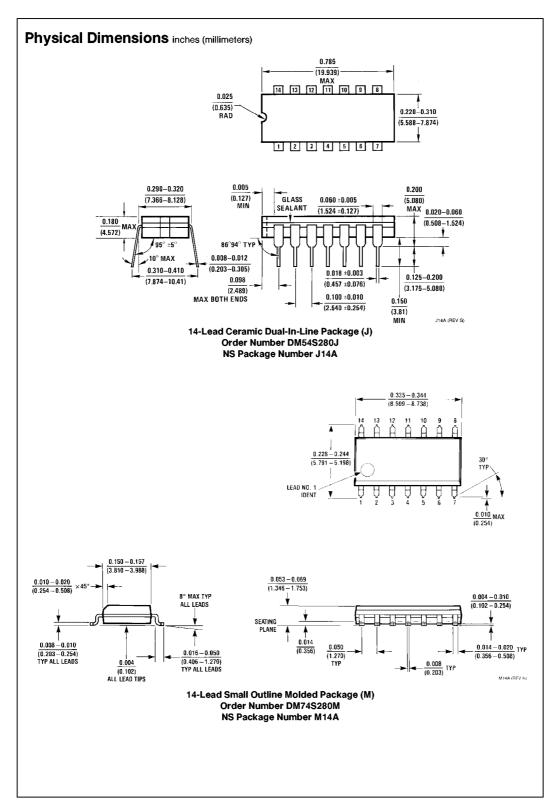
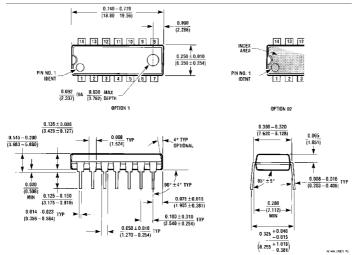
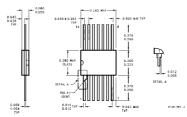


FIGURE 1. 25-Line Parity/Generator Checker


FIGURE 2. 81-Line Parity/Generator Checker

Physical Dimensions inches (millimeters) (Continued)

14-Lead Molded Dual-In-Line Package (N) Order Number DM74S280N NS Package Number N14A

14-Lead Ceramic Flat Package (W) Order Number DM54S280W NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Fax: (+49) 0-180-530 85 86 Email: cniyage etevm2.nsc.com Deutsch Tel: (+49) 0-180-539 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408