

GAL16V8/883

High Performance E²CMOS PLD Generic Array Logic[™]

Features

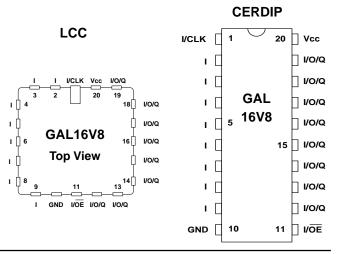
- HIGH PERFORMANCE E²CMOS[®] TECHNOLOGY
- 7.5 ns Maximum Propagation Delay
- Fmax = 100 MHz
- 6 ns Maximum from Clock Input to Data Output
- TTL Compatible 12 mA Outputs
- UltraMOS® Advanced CMOS Technology
- 50% REDUCTION IN POWER FROM BIPOLAR
 75mA Typ Icc
- ACTIVE PULL-UPS ON ALL PINS (GAL16V8D-7 and GAL16V8D-10)
- E² CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100% Tested/100% Yields
- High Speed Electrical Erasure (<100ms)
- 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
- Maximum Flexibility for Complex Logic Designs
- Programmable Output Polarity
- Also Emulates 20-pin PAL[®] Devices with Full Function/ Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS — 100% Functional Testability
- APPLICATIONS INCLUDE:
 - DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

Description

The GAL16V8/883 is a high performance E²CMOS programmable logic device processed in full compliance to MIL-STD-883. This military grade device combines a high performance CMOS process with Electrically Erasable (E²) floating gate technology to provide the highest speed/power performance available in the 883 qualified PLD market. The GAL16V8D/883, at 7.5ns maximum propagation delay time, is the world's fastest military qualified CMOS PLD.

The generic GAL architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL16V8/883 is capable of emulating all standard 20-pin PAL[®] devices with full function/fuse map/parametric compatibility.

Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. Therefore, Lattice Semiconductor delivers 100% field programmability and functionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified.


CLK 8 1/0/0 OLMC 8 ₽ I/O/Q OLMC -> I/O/Q OLMC ш 8 -12 PROGRAMMABI AND-ARRAY 32) 8 OLMO 1/0/0 اک × 64 OLMC I/O/Q 8 I/O/Q OLMC 8 -> OLMC I/O/Q 8 -> *

8 OLMC

OE

-Þ

Copyright © 1999 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com

February 1999

1/0/0

I/OE

Functional Block Diagram

I/CLK

Absolute Maximum Ratings⁽¹⁾

Supply voltage V _{cc} –0.5 to +7V Input voltage applied –2.5 to V _{cc} +1.0V
Off-state output voltage applied -2.5 to V _{cc} +1.0V
Storage Temperature65 to 150°C
Case Temperature with

Power Applied–55 to 125°C

1.Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

Recommended Operating Conditions

Case Temperature (T _c)	–55 to 125°C
Supply voltage (V _{cc})	
with Respect to Ground	+4.50 to +5.50V

DC Electrical Characteristics

SYMBOL	PARAMETER		CONDITION		MIN.	TYP. ³	MAX.	UNITS
VIL	Input Low Voltage				Vss – 0.5		0.8	V
VIH	Input High Voltage				2.0	_	Vcc+1	V
IIL ¹	Input or I/O Low Lea	kage Current	$0V \leq V_{IN} \leq V_{IL}$ (MAX.)		_	_	-100	μA
Ін	Input or I/O High Leakage Current		$3.5V \le V_{\text{IN}} \le V_{\text{CC}}$		_		10	μA
VOL	Output Low Voltage		IOL = MAX. Vin = VIL O	r VIH		_	0.5	V
V он	Output High Voltage	•	Iон = MAX. Vin = VIL о	r V ін	2.4	_	_	V
IOL	Low Level Output C	urrent			_	_	12	mA
Юн	High Level Output Current				_	_	-2	mA
OS ²	Output Short Circuit	Current	$V_{CC} = 5V$ $V_{OUT} = 0.5V$ $T_{A} = 25^{\circ}C$		-30	_	-150	mA
Icc	Operating Power	V IL = 0.5V V IH =	H = 3.0V L-7/-10		_	75	130	mA
	Supply Current	f _{toggle} = 15MHz Outputs Open						

Over Recommended Operating Conditions (Unless Otherwise Specified)

1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.

2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested.

3) Typical values are at Vcc = 5V and $T_A = 25 \degree C$

AC Switching Characteristics

Over Recommended	Operating Conditions
-------------------------	-----------------------------

	TEST	DESCRIPTION	-	7	-1	0	
PARAMETER COND ¹ .			MIN.	MAX.	MIN.	MAX.	UNITS
t pd	А	Input or I/O to Combinational Output	1	7.5	2	10	ns
tco	А	Clock to Output Delay	1	6	1	7	ns
tcf ²	—	Clock to Feedback Delay		6		7	ns
t su	—	Setup Time, Input or Feedback before ${\sf Clock}{\uparrow}$	7	—	10	—	ns
t h	—	Hold Time, Input or Feedback after $Clock^\uparrow$	0	_	0	—	ns
	A	Maximum Clock Frequency with External Feedback, 1/(tsu + tco)	76.9	_	58.8	-	MHz
f max ³	A	Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf)	76.9	_	58.8	_	MHz
	A	laximum Clock Frequency with o Feedback		_	62.5	_	MHz
t wh	_	Clock Pulse Duration, High	5	_	8	_	ns
twi	—	Clock Pulse Duration, Low	5	_	8	_	ns
t en	В	Input or I/O to Output Enabled	1	9		10	ns
	В	OE to Output Enabled		7	_	10	ns
t dis	С	Input or I/O to Output Disabled	1	9		10	ns
	С	OE to Output Disabled	1	7		10	ns

1) Refer to Switching Test Conditions section.

2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.

3) Refer to fmax Descriptions section.

Capacitance ($T_A = 25^{\circ}C$, f = 1.0 MHz)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C ₁	Input Capacitance	10	pF	$V_{cc} = 5.0V, V_1 = 2.0V$
C _{I/O}	I/O Capacitance	10	pF	$V_{cc} = 5.0V, V_{i/0} = 2.0V$

*Characterized but not 100% tested.

Specifications GAL16V8D/883

Absolute Maximum Ratings⁽¹⁾

Supply voltage V _{cc}	–0.5 to +7V
Input voltage applied	
Off-state output voltage applied	–2.5 to V _{cc} +1.0V
Storage Temperature	–65 to 150°C
Case Temperature with	

Power Applied–55 to 125°C

 Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

Recommended Operating Conditions

Case Temperature (T _c)	–55 to 125°C
Supply voltage (V _{cc})	
with Respect to Ground	+4.50 to +5.50V

DC Electrical Characteristics

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER		CONDITION		MIN.	TYP. ²	MAX.	UNITS
Vı∟	Input Low Voltage				Vss – 0.5	_	0.8	V
V ΙΗ	Input High Voltage				2.0	_	Vcc+1	V
IL	Input or I/O Low Leal	kage Current	$0V \leq V_{IN} \leq V_{IL} (MA)$	K .)	_	_	-10	μA
Ін	Input or I/O High Leakage Current		$3.5V \le V_{\text{IN}} \le V_{\text{CC}}$		_	_	10	μA
VOL	Output Low Voltage		IOL = MAX. Vin = VIL or VIH		_	_	0.5	V
V он	Output High Voltage	h Voltage Іон		Vi∟ or Viн	2.4	_	_	V
OL	Low Level Output Cu	irrent			_	_	12	mA
ЮН	High Level Output Co	urrent				_	-2	mA
OS ¹	Output Short Circuit	Current	rent Vcc = 5V Vout = 0.5		-30	_	-150	mA
Icc	Operating Power	V IL = 0.5V V IH =	н = 3.0V L -15/ -20/-30			75	130	mA
	Supply Current	ftoggle = 15MHz C	toggle = 15MHz Outputs Open					

1) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested.

3) Typical values are at Vcc = 5V and T_A = 25 $^{\circ}$ C

AC Switching Characteristics

Over Recommended Operating Conditions

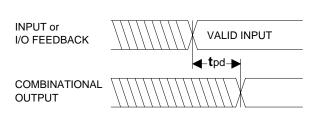
	ARAMETER TEST DESCRIPTION COND ¹ .		-	15		-20		-30	
PARAMETER			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
t pd	А	Input or I/O to Combinational Output	3	15	3	20	3	30	ns
t co	А	Clock to Output Delay	2	12	2	15	2	20	ns
tcf ²	_	Clock to Feedback Delay	_	12	_	15	_	20	ns
t su		Setup Time, Input or Feedback before Clock1	12	_	15	_	25	_	ns
t h	—	Hold Time, Input or Feedback after Clock↑	0	_	0	_	0	_	ns
	A	Maximum Clock Frequency with External Feedback, 1/(tsu + tco)	41.6	-	33.3	—	22.2	_	MHz
f max ³	A	Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf)	41.6	—	33.3	—	22.2	—	MHz
	А	Maximum Clock Frequency with No Feedback		_	41.6	_	33.3	_	MHz
t wh	_	Clock Pulse Duration, High	10	_	12	_	15	_	ns
twl	_	Clock Pulse Duration, Low	10	_	12		15		ns
t en	В	Input or I/O to Output Enabled	_	15	_	20	_	30	ns
	В	OE to Output Enabled	_	15		18	_	25	ns
t dis	С	Input or I/O to Output Disabled	_	15	_	20		30	ns
	С	OE to Output Disabled	_	15	_	18	_	25	ns

1) Refer to Switching Test Conditions section.

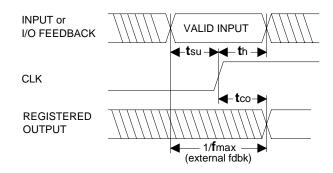
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.

3) Refer to **fmax Descriptions** section.

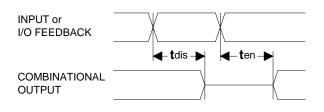
Capacitance ($T_A = 25^{\circ}C$, f = 1.0 MHz)

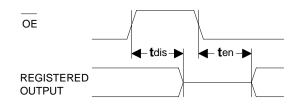

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C	Input Capacitance	10	pF	$V_{cc} = 5.0V, V_1 = 2.0V$
C _{I/O}	I/O Capacitance	10	pF	$V_{cc} = 5.0V, V_{VO} = 2.0V$

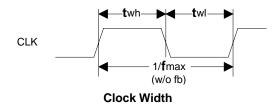
*Characterized but not 100% tested.

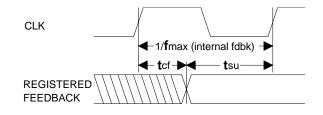


Specifications GAL16V8/883


Switching Waveforms

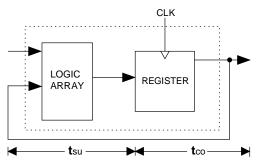

Combinatorial Output


Registered Output

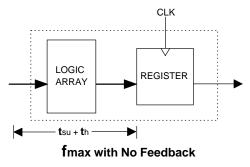


Input or I/O to Output Enable/Disable

OE to Output Enable/Disable



fmax with Feedback

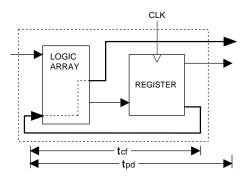


fmax Descriptions

fmax with External Feedback 1/(tsu+tco)

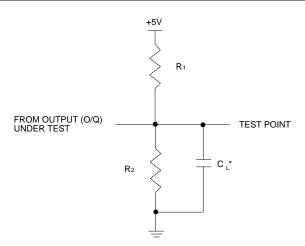
Note: fmax with external feedback is calculated from measured tsu and tco.

Note: fmax with no feedback may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%.


Switching Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10% – 90%
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.

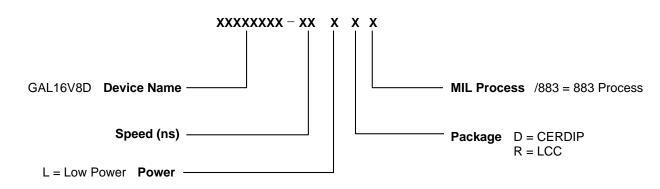

Output Load Conditions (see figure)

Tes	t Condition	R1	R2	C∟
Α		390Ω	750Ω	50pF
В	Active High	~	750Ω	50pF
	Active Low	390Ω	750Ω	50pF
С	Active High	∞	750Ω	5pF
	Active Low	390Ω	750Ω	5pF

fmax with Internal Feedback 1/(tsu+tcf)

Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE



GAL16V8 Ordering Information (MIL-STD-883 and SMD)

					Ordering #		
Tpd (ns)	Tsu (ns)	Tco (ns)	lcc (mA)	Package	MIL-STD-883	SMD #	
7.5	7	6	130	20-Pin CERDIP	GAL16V8D-7LD/883	5962-8983907RA	
			130	20-Pin LCC	GAL16V8D-7LR/883	5962-89839072A	
10	10	7	130	20-Pin CERDIP	GAL16V8D-10LD/883	5962-8983904RA	
			130	20-Pin LCC	GAL16V8D-10LR/883	5962-89839042A	
15	12	12	130	20-Pin CERDIP	GAL16V8D-15LD/883	5962-8983903RA	
			130	20-Pin LCC	GAL16V8D-15LR/883	5962-89839032A	
20	15	15	130	20-Pin CERDIP	GAL16V8D-20LD/883	5962-8983902RA	
			130	20-Pin LCC	GAL16V8D-20LR/883	5962-89839022A	
30	25	20	130	20-Pin CERDIP	GAL16V8D-30LD/883	5962-8983901RA	

Note: Lattice Semiconductor recognizes the trend in military device procurement towards using SMD compliant devices, as such, ordering by this number is recommended.

Part Number Description

