## DIRECT BUS CONNECTED CMOS REAL TIME CLOCK/CALENDAR

## DESCRIPTION

The MSM6242B is a silicon gate CMOS Real Time Clock/Calendar for use in direct busconnection Microprocessor/Microcomputer applications. An on-chip 32.768 kHz crystal oscillator time base is divided to provide addressable 4-bit I/O data for SECONDS, MINUTES, HOURS, DAY OF WEEK, DATE, MONTH and YEAR. Data access is controlled by 4-bit address, chip selects ( $\overline{\mathrm{CSO}}, \mathrm{CS} 1$ ), $\overline{\text { WRITE, }} \overline{\text { READ }}$, and ALE. Control Registers $\mathrm{D}, \mathrm{E}$ and F provide for 30 SECOND error adjustment, INTERRUPT REQUEST (IRQ FLAG) and BUSY status bits, clock STOP, HOLD, and RESET FLAG bits, 4 selectable INTERRUPTS rates are available at the STD.P
(STANDARD PULSE) output utilizing Control Register inputs T0, T1 and the ITRPT/ STND (INTERRUPT/STANDARD). Masking of the interrupt output (STD.P) can be accomplished via the MASK bit. The MSM6242B can operate in a 12/24 hour format and Leap Year timing is automatic.

The MSM6242B normally operates from a 5 V $\pm 10 \%$ supply at -40 to $+85^{\circ} \mathrm{C}$. Battery backup operation down to 2.0 V allows continuation of time keeping when main power is off. The MSM6242B is offered in a 18-pin plastic DIP and a 24 -pin plastic Small Outline package.

## FEATURES

DIRECT MICROPROCESSOR/MICROCONTROLLER BUS CONNECTION

| TIME | MONTH | DATE | YEAR | DAY OF WEEK |
| :--- | :---: | :---: | :---: | :---: |
| $23: 59: 59$ | 12 | 31 | 80 | 7 |

- 4-bit data bus
- 4-bit address bus
- $\overline{\text { READ }}, \overline{W R I T E}$, ALE and CHIP SELECT INPUTS
- Status registers - IRQ and BUSY
- Selectable interrupt outputs $-1 / 64$
second, 1 second, 1 minute, 1 hour
- Interrupt masking
- 12/24 hour format
- Auto leap year
- $\pm 30$ second error correction
- Single 5 V supply
- Battery backup down to $\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$
- Low power dissipation:
$20 \mu \mathrm{~W}$ max at $\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$
$150 \mu \mathrm{~W}$ max at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- 32.768 kHz crystal controlled operation
- Package: 18-pin plastic DIP (DIP18-P-300-2.54) (MSM6242BRS)

24-pin plastic SOP (SOP24-P-430-1.27-K) (MSM6242BGS-K)

## FUNCTIONAL BLOCK DIAGRAM



## PIN CONFIGURATION



## REGISTER TABLE

| Address Input | Address Input |  |  |  | Register Name | Data |  |  |  | Count Value | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ |  | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{0}$ |  |  |
| 0 | 0 | 0 | 0 | 0 | $S_{1}$ | $\mathrm{S}_{8}$ | S4 | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | 0 to 9 | 1-second digit register |
| 1 | 0 | 0 | 0 | 1 | $\mathrm{S}_{10}$ | * | $\mathrm{S}_{40}$ | $\mathrm{S}_{20}$ | $\mathrm{S}_{10}$ | 0 to 5 | 10-second digit register |
| 2 | 0 | 0 | 1 | 0 | $\mathrm{Ml}_{1}$ | $\mathrm{mi}_{8}$ | $\mathrm{mi}_{4}$ | $\mathrm{mi}_{2}$ | $\mathrm{mi}_{1}$ | 0 to 9 | 1-minute digit register |
| 3 | 0 | 0 | 1 | 1 | $\mathrm{Ml}_{10}$ | * | $\mathrm{mi}_{40}$ | $\mathrm{mi}_{20}$ | $\mathrm{mi}_{10}$ | 0 to 5 | 10-minute digit register |
| 4 | 0 | 1 | 0 | 0 | $\mathrm{H}_{1}$ | $\mathrm{h}_{8}$ | $\mathrm{h}_{4}$ | $\mathrm{h}_{2}$ | $\mathrm{h}_{1}$ | 0 to 9 | 1-hour digit register |
| 5 | 0 | 1 | 0 | 1 | $\mathrm{H}_{10}$ | * | $\begin{aligned} & \text { PM/ } \\ & \text { AM } \end{aligned}$ | $\mathrm{h}_{20}$ | $\mathrm{h}_{10}$ | $\begin{aligned} & 0 \text { to } 2 \\ & \text { or } 0 \text { to } 1 \end{aligned}$ | PM/AM, 10-hour digit register |
| 6 | 0 | 1 | 1 | 0 | $\mathrm{D}_{1}$ | $\mathrm{d}_{8}$ | $\mathrm{d}_{4}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | 0 to 9 | 1-day digit register |
| 7 | 0 | 1 | 1 | 1 | $\mathrm{D}_{10}$ | * | * | $\mathrm{d}_{20}$ | $\mathrm{d}_{10}$ | 0 to 3 | 10-day digit register |
| 8 | 1 | 0 | 0 | 0 | $\mathrm{MO}_{1}$ | mo8 | $\mathrm{mo}_{4}$ | $\mathrm{mo}_{2}$ | mo1 | 0 to 9 | 1-month digit register |
| 9 | 1 | 0 | 0 | 1 | $\mathrm{MO}_{10}$ | * | * | * | $\mathrm{MO}_{10}$ | 0 to 1 | 10-month digit register |
| A | 1 | 0 | 1 | 0 | $Y_{1}$ | Y8 | y 4 | $\mathrm{y}_{2}$ | y1 | 0 to 9 | 1-year digit register |
| B | 1 | 0 | 1 | 1 | $Y_{10}$ | Y80 | y 40 | Y 20 | y10 | 0 to 9 | 10-year digit register |
| C | 1 | 1 | 0 | 0 | W | * | $\mathrm{W}_{4}$ | $\mathrm{w}_{2}$ | $\mathrm{w}_{1}$ | 0 to 6 | Week register |
| D | 1 | 1 | 0 | 1 | $C_{D}$ | $\begin{array}{r} 30 \\ \text { sec. } \\ \text { ADJ } \end{array}$ | $\begin{aligned} & \text { IRQ } \\ & \text { FLAG } \end{aligned}$ | BUSY | HOLD | - | Control Register D |
| E | 1 | 1 | 1 | 0 | $\mathrm{C}_{\mathrm{E}}$ | $t_{1}$ | $t_{0}$ | $\begin{aligned} & \text { ITRPT/ } \\ & \text { STND } \end{aligned}$ | MASK | - | Control Register E |
| F | 1 | 1 | 1 | 1 | $\mathrm{C}_{\text {F }}$ | TEST | 24/12 | STOP | REST | - | Control Register F |

REST = RESET
ITRPT/STND = INTERRUPT/STANDARD
Note 1) - Bit * does not exist (unrecognized during a write and held at " 0 " during a read).
Note 2) - Be sure to mask the AM/PM bit when processing 10's of hour's data.
Note 3) - BUSY bit is read only. The IRQ FLAG bit can only be set to a " 0 ". Setting the IRQ FLAG to a " 1 " is done by hardware.
Note 4) - PM at 1 and $A M$ at 0 for PM/AM bit.
Figure 1 Register Table

## OSCILLATOR FREQUENCY DEVIATIONS



Note: 1. The graghs above showing frequency deviation vs temperature/voltage are primarily characteristic of the MSM6242B with the oscillation circuit described below.


Crystal: Type $\mathrm{N}_{0}, \mathrm{P}_{3}$ by kinseki ( 32.768 kHz ) $\mathrm{C}_{\mathrm{G}}, \mathrm{C}_{\mathrm{D}}: 22 \mathrm{pF}$ (Temperature Characteristics: 0 )

ABSOLUTE MAXIMUM RATINGS

| Parameter | Symbol | Condition | Rating | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltage | $V_{\text {D }}$ | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | -0.3 to +7 | V |
| Input Voltage | V |  | -0.3 to VDD +0.3 | V |
| Output Voltage | Vo |  | -0.3 to VDD +0.3 | V |
| Storage Temperature | TSTG | - | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

OPERATING CONDITIONS

| Parameter | Symbol | Condition | Rating | Unit |
| :--- | :---: | :---: | :---: | :---: |
| Power Supply Voltage | $\mathrm{V}_{\mathrm{DD}}$ | - | 4 to 6 | V |
| Standby Supply Voltage | $\mathrm{V}_{\mathrm{BAK}}$ | - | 2 to 6 |  |
| Crystal Frequency | $\mathrm{f}_{(X T)}$ | - | 32.768 | kHz |
| Operating Temperature | $\mathrm{T}_{0 \mathrm{P}}$ | - | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |

DC Characteristics

| $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}_{\mathrm{a}}=-40\right.$ to +85 ) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Condition |  | Min. | Typ. | Max. | Unit | Applicable Terminal |
| "H" Input Voltage | $\mathrm{V}_{\mathrm{H} 1}$ | - |  | 2.2 | - | - | V | All input terminals except $\mathrm{CS}_{1}, \mathrm{XT}$ |
| "L" Input Voltage | VIL1 | - |  | - | - | 0.8 |  |  |
| Input Leak Current | ILk1 | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}} / 0 \mathrm{~V}$ |  | - | - | 1/-1 | $\mu \mathrm{A}$ | Input terminals other than $\mathrm{D}_{0}$ to $\mathrm{D}_{3}, \mathrm{XT}$ |
| Input Leak Current | ILk2 |  |  | - | - | 10/-10 |  | $\mathrm{D}_{0}$ to $\mathrm{D}_{3}$ |
| "L" Output Voltage | $\mathrm{V}_{0} 1$ | $\mathrm{I}_{0 \mathrm{~L}}=2.5 \mathrm{~mA}$ |  | - | - | 0.4 | V | $\mathrm{D}_{0}$ to $\mathrm{D}_{3}$ |
| "H" Output Voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{IOH}^{\text {a }}=-400 \mu \mathrm{~A}$ |  | 2.4 | - | - |  |  |
| "L" Output Voltage | $\mathrm{V}_{\text {OL2 }}$ | $\mathrm{I}_{\text {OL }}=2.5 \mathrm{~mA}$ |  | - | - | 0.4 | V | STD.P |
| OFF Leak Current | IOFFLK | $\mathrm{V}=\mathrm{V}_{\mathrm{DD}} / 0 \mathrm{~V}$ |  | - | - | 10 | $\mu \mathrm{A}$ |  |
| Input Capacitance | CI | Input frequency 1 MHz |  | - | 5 | - | pF | All input terminals |
| Current Consumption | $I_{\text {dD } 1}$ | $\begin{aligned} & \mathrm{f}_{(\mathrm{xt})}= \\ & 32.768 \\ & \mathrm{kHz} \\ & \mathrm{CS}_{1} \approx 0 \end{aligned}$ | $\begin{aligned} & V_{D D}= \\ & 5 \mathrm{~V} \end{aligned}$ | - | - | 30 | $\mu \mathrm{A}$ | $V_{D D}$ |
| Current Consumption | $I_{\text {DD } 2}$ |  | $\begin{aligned} & V_{D D}= \\ & 2 \mathrm{~V} \end{aligned}$ | - | - | 10 |  |  |
| "H" Input Voltage | $\mathrm{V}_{\mathrm{H}} 2$ | $V_{D D}=2$ to 5.5 V |  | $4 / 5 \mathrm{~V}_{\mathrm{DD}}$ | - | - | V | $\mathrm{CS}_{1}$ |
| "L" Input Voltage | VIL2 |  |  | - | - | $1 / 5 \mathrm{~V}_{\mathrm{DD}}$ |  |  |

## SWITCHING CHARACTERISTICS

(1) WRITE mode (ALE = VDD)

$$
\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \mathrm{Ta}=-40 \text { to }+85^{\circ} \mathrm{C}\right)
$$

| Parameter | Symbol | Condition | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CS ${ }_{1}$ Set up Time | $\mathrm{t}_{\text {c1s }}$ | - | 1000 | - | ns |
| CS ${ }_{1}$ Hold Time | $\mathrm{t}_{\text {c1H }}$ | - | 1000 | - |  |
| Address Stable before WRITE | $t_{\text {Aw }}$ | - | 20 | - |  |
| Address Stable after WRITE | twa | - | 10 | - |  |
| WRITE Pulse Width | tww | - | 120 | - |  |
| Data Set up Time | $t_{\text {DS }}$ | - | 100 | - |  |
| Data Hold Time | $t_{\text {DH }}$ | - | 10 | - |  |
| $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Recovery Time | $\mathrm{t}_{\text {RCV }}$ | - | 60 | - |  |



## (2) WRITE mode (With use of ALE)

| $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Condition | Min. | Max. | Unit |
| CS ${ }_{1}$ Set up Time | $\mathrm{t}_{\mathrm{c} 1 \mathrm{~S}}$ | - | 1000 | - | ns |
| Address Set up Time | $t_{\text {AS }}$ | - | 25 | - |  |
| Address Hold Time | $\mathrm{t}_{\text {AH }}$ | - | 25 | - |  |
| ALE Pulse Width | $\mathrm{taw}_{\text {w }}$ | - | 40 | - |  |
| ALE before WRITE | $t_{\text {ALW }}$ | - | 10 | - |  |
| WRITE Pulse Width | tww | - | 120 | - |  |
| ALE after WRITE | twal | - | 20 | - |  |
| Data Set up Time | tDS | - | 100 | - |  |
| Data Hold Time | $t_{\text {DH }}$ | - | 10 | - |  |
| CS ${ }_{1}$ Hold Time | $\mathrm{t}_{\text {c1H }}$ | - | 1000 | - |  |
| $\overline{\mathrm{RD}}$ / $\overline{\mathrm{WR}}$ Recovery Time | $\mathrm{t}_{\mathrm{RCV}}$ | - | 60 | - |  |



Figure 5 Write Cycle - (With Use of ALE)
(3) READ mode (ALE = VDD)

| Parameter | Symbol | Condition | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CS}_{1}$ Set up Time | ${ }_{\mathrm{t}}^{1} \mathrm{~S}$ | - | 1000 | - | ns |
| CS ${ }_{1}$ Hold Time | $\mathrm{t}_{\text {ciH }}$ | - | 1000 | - |  |
| Address Stable before READ | $t_{\text {AR }}$ | - | 20 | - |  |
| Address Stable after READ | $t_{\text {RA }}$ | - | 0 | - |  |
| $\overline{\mathrm{RD}}$ to Data | trd | $C_{L}=150 \mathrm{pF}$ | - | 120 |  |
| Data Hold | tor | - | 0 | - |  |
| $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Recovery Time | trcV | - | 60 | - |  |

[^0]
## (4) READ mode (With use of ALE)

| $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Condition | Min. | Max. | Unit |
| CS ${ }_{1}$ Set up Time | $\mathrm{t}_{\mathrm{c} 1 \mathrm{~S}}$ | - | 1000 | - | ns |
| Address Set up Time | $\mathrm{t}_{\text {AS }}$ | - | 25 | - |  |
| Address Hold Time | $\mathrm{t}_{\mathrm{AH}}$ | - | 25 | - |  |
| ALE Pulse Width | $t_{\text {AW }}$ | - | 40 | - |  |
| ALE before READ | taLR | - | 10 | - |  |
| ALE after READ | $t_{\text {RAL }}$ | - | 10 | - |  |
| $\overline{\mathrm{RD}}$ to Data | $t_{\text {RD }}$ | $C_{L}=150 \mathrm{pF}$ | - | 120 |  |
| Data Hold | $t_{\text {DR }}$ | - | 0 | - |  |
| CS ${ }_{1}$ Hold Time | $\mathrm{t}_{\text {c1H }}$ | - | 1000 | - |  |
| $\overline{\mathrm{RD}}$ / $\overline{\mathrm{WR}}$ Recovery Time | trCV | - | 60 | - |  |

[^1]
## PIN DESCRIPTION

| Name | Pin No. |  | Description |
| :---: | :---: | :---: | :---: |
|  | RS | GS-K |  |
| $\mathrm{D}_{0}$ | 14 | 19 | Data Input/Output pins to be directly connected to a microcontroller bus for reading and writing of the clock/calendar's registers and control registers. D0 $=$ LSB and D3 $=$ MSB. |
| $\mathrm{D}_{1}$ | 13 | 16 |  |
| $\mathrm{D}_{2}$ | 12 | 15 |  |
| $\mathrm{D}_{3}$ | 11 | 14 |  |
| $\mathrm{A}_{0}$ | 4 | 5 | Address input pin for use by a microcomputer to select internal clock/calendar's registers and control registers for Read/Write operations (See Function Table Figure 1). Address input pins A0-A3 are used in combination with ALE for addressing registers. |
| $\mathrm{A}_{1}$ | 5 | 7 |  |
| $\mathrm{A}_{2}$ | 6 | 9 |  |
| $\mathrm{A}_{3}$ | 7 | 10 |  |
| ALE | 3 | 4 | Address Latch Enable pin. This pin enables writing of address data when ALE $=1$ and $\overline{\mathrm{CS}}_{0}=0$; address data is latched when ALE $=0$ Microcontroller/Microprocessors having an ALE output should connect to this pin; otherwise it should be connected at $V_{D D}$ |
| $\overline{W R}$ | 10 | 13 | Writing of data is performed by this pin. When $\mathrm{CS}_{1}=1$ and $\overline{\mathrm{CS}}_{0}=0, D_{0}$ to $D_{3}$ data is written into the register at the rising edge of $\overline{W R}$. |
| $\overline{\mathrm{RD}}$ | 8 | 11 | Reading of register data is accomplished using this pin. When $\mathrm{CS}_{1}=1, \overline{\mathrm{CS}}_{0}=0$ and $\overline{\mathrm{RD}}=0$, the data of this register is output to $\mathrm{D}_{0}$ to $\mathrm{D}_{3}$. If both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ are set at 0 simaltaneously, $\overline{\mathrm{RD}}$ is to be inhibited. |
| $\overline{\mathrm{CS}} 0$ | 2 | 2 | Chip Select pins. These pins enable/disable ALE, $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ operation. $\overline{\mathrm{CS}}_{0}$ and ALE work in combination with one another, while $\mathrm{CS}_{1}$ work independent with ALE. CS 1 must be connected to power failure detection as shown in Figure 18. |
| $\mathrm{CS}_{1}$ | 15 | 20 |  |
| STD.P | 1 | 1 | Output pin of N-CH OPEN DRAIN type. The output data is controlled by the $\mathrm{D}_{1}$ data content of $\mathrm{C}_{\mathrm{E}}$ register. This pin has a priority to $\overline{\mathrm{CS}}_{0}$ and $\mathrm{CS}_{1}$. Refer to Figure 9 and FUNCTIONAL DESCRIPTION OF REGISTERS. |
| XT | 16 | 22 | 32.768 kHz crystal is to be connected to these pins. <br> When an external clock of 32.768 kHz is to be used for MSM6242B's oscillation source, either CMOS output or pull-up TTL output is to be input from XT, while $\overline{\mathrm{XT}}$ should be left open. |
| $\overline{\text { XT }}$ | 17 | 23 |  |
| $V_{D D}$ | 18 | 24 | Power supply pin. +2 to +6 V power is to be applied to this pin. |
| GND | 9 | 12 | Ground pin. |
|  |  |  | The impedance of the crystal should be less than $30 \mathrm{k} \Omega$ <br> Figure 8 Oscillator Circuit <br> Figure 9 |

## FUNCTIONAL DESCRIPTION OF REGISTERS

$S_{1}, S_{10}, M I_{1}, M I_{10}, H_{1}, H_{10}, D_{1}, D_{10}, M O_{1}, M O_{10}, Y_{1}, Y_{10}, W$
a) These are abbreviations for SECOND1, SECOND10, MINUTE1, MINUTE10, HOUR1, HOUR10, DAY1, DAY10, MONTH1, MONTH10, YEAR1, YEAR10, and WEEK. These values are in BCD notation.
b) All registers are logically positive. For example, (S8, S4, S2, S1) $=1001$ which means 9 seconds.
c) If data is written which is out of the clock register data limits, it can result in erroneous clock data being read back.
d) $\mathrm{PM} / \mathrm{AM}, \mathrm{h}_{20}, \mathrm{~h}_{10}$

In the mode setting of 24-hour mode, $\mathrm{PM} / \mathrm{AM}$ bit is ignored, while in the setting of 12 -hour mode $h_{20}$ is to be set. Otherwise it causes a discrepancy. In reading out the PM/AM bit in the 24 -hour mode, it is continuously read out as 0 . In reading outh ${ }_{20}$ bit in the 12 -hour mode, 0 is written into this bit first, then it is continuously read out as 0 unless 1 is being written into this bit.
e) Registers Y1, Y10, and Leap Year. The MSM6242B is designed exclusively for the Christian Era and is capable of identifying a leap year automatically. The result of the setting of a nonexistant day of the month is shown in the following example: If the date February 29 or November 31, 1985, was written, it would be changed automatically to March 1, or December 1, 1985 at the exact time at which a carry pulse occurs for the day's digit.
f) The Register W data limits are $0-6$ (Tabel 1 shows a possible data definition).

Table 1

| $\mathrm{W}_{4}$ | $\mathrm{~W}_{2}$ | $\mathrm{~W}_{1}$ | Day of Week |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | Sunday |
| 0 | 0 | 1 | Monday |
| 0 | 1 | 0 | Tuesday |
| 0 | 1 | 1 | Wednesday |
| 1 | 0 | 0 | Thursday |
| 1 | 0 | 1 | Friday |
| 1 | 1 | 0 | Saturday |



Figure 10 Reading and Writing of Registers $S_{1}$ to $\bar{W}$


## CD REGISTER (Control D Register)

a) $\operatorname{HOLD}(\mathrm{D} 0)-\quad$ Setting this bit to a " 1 " inhibits the 1 Hz clock to the S 1 counter, at which time the Busy status bit can be read. When Busy $=0$, register's $S_{1}$ to $\bar{W}$ can be read or written. During this procedure if a carry occurs the S1 counter will be incremented by 1 second after HOLD $=0$ (this condition is guaranteed as long as HOLD $=1$ does not exceed 1 second in duration). If CS1 $=0$ then HOLD $=0$ irrespective of any condition.
b) BUSY (D1) - Status bit which shows the interface condition with microcontroller/ microprocessors. As for the method of writing into and reading from $S_{1}$ to $\bar{W}$ (address $\phi$ to C), refer to the flow chart described in Figure 10.
c) IRQ FLAG (D2) - This status bit corresponds to the output level of the STD.P output. When STD. $P=0$, then $\operatorname{IRQ}=1$; when STD. $P=1$, then IRQ $=0$. The IRQ FLAG indicates that an interrupt has occurred to the microcomputer if $\operatorname{IRQ}=1$. When D0 of register $\mathrm{C}_{\mathrm{E}}(\mathrm{MASK})=0$, then the STD.P output changes according to the timing set by D3 $\left(\mathrm{t}_{1}\right)$ and D2 $\left(\mathrm{t}_{0}\right)$ of register E . When D1 of register E (ITRPT/STND) $=1$ (interrupt mode), the STD.P output remains low until the IRQ FLAG is written to a " 0 ". When IRQ $=1$ and timing for a new interrupt occurs, the new interrupt is ignored. When ITRPT/STND $=0$ (Standard Pulse Output mode) the STD.P output remains low until either " 0 " is written to the IRQ FLAG; otherwise, the IRQ FLAG automatically goes to "0" after 7.8125 ms . When writing the HOLD or 30 second adjust bits of register D , it is necessary to write the IRQ FLAG bit to a "1".
d) $\pm 30 \mathrm{ADJ}(\mathrm{D} 3)-$ When 30 -second adjustment is necessary, a "1" is written to bit D3 during which time the internal clock registers should not be read from or written to $125 \mu$ s after bit D3 = 1 it will automatically return to a " 0 ", and at that time reading or writing of registers can occur.


Figure 11 Writing 30-Second Adj. bit (Two Ways A, B)

## CE REGISTER (Control E Register)

a) MASK (D0) - This bit controls the STD.P output. When MASK $=1$, then STD.P $=1$ (open); when MASK $=0$, then STD.P $=$ output mode. The relationship between the MASK bit and STD.P output is shown Figure 12.
b) ITRPT/STND (D1) - The ITRPT/STND input is used to switch the STD.P output between its two modes of operation, interrupt and Standard timing waveforms. When ITRPT/STND $=0$ a fixed cycle waveform with a low-level pulse width of 7.8125 ms is present at the STD.P output. At this time the MASK bit must equal 0 , while the period in either mode is determined by T0 (D2) and T1 (D3) of Register E.
c) T 0 (D2), T 1 (D3) - These two bits determine the period of the STD.P output in both interrupt and Fixed timing waveform modes. The tables below show the timing associated with the $\mathrm{T} 0, \mathrm{~T} 1$ inputs as well as their relationship to INTRPT/STND and STD.P.


Figure 12

Table 2

| $\mathrm{t}_{1}$ | $\mathrm{t}_{0}$ | Period | Duty CYCLE of "0" level when <br> ITRPT/STND bit is "0". |
| :---: | :---: | :--- | :--- |
| 0 | 0 | $1 / 64$ second | $1 / 2$ |
| 0 | 1 | 1 second | $1 / 128$ |
| 1 | 0 | 1 minute | $1 / 7680$ |
| 1 | 1 | 1 hour | $1 / 460800$ |

The timing of the STD.P output designated by T1 and T0 occurs the moment that a carry occurs to a clock digit.

d) The low-level pulse width of the fixed cycle waveform (ITRPT/STND $=0$ ) is 7.8125 ms independent of $\mathrm{T} 0 / \mathrm{T} 1$ inputs.
e) The fixed cycle waveform mode can be used for adjustment of the oscillator frequency time base. (See Figure 14).
f) During $\pm 30$ second adjustment a carry can occur that will cause the STD.P output to go low when T0/T1 $=1,0$ or 1,1 . However, when $\mathrm{T} 1 / \mathrm{T} 0=0,0$ and ITRPT $/ \mathrm{STND}=0$, carry does not occur and the STD.P output resumes normal operation.
g) The STD.P output is held (frozen) at the point at which STOP $=1$ while ITRPT $/$ STND $=0$.
h) No STD.P output change occurs as a result of writing data to registers S1 to H 1 .

## C $_{\mathrm{F}}$ REGISTER (Control F Register)

a) REST (D0) - This bit is used to clear the clock's internal divider/counter of less than a "RESET" second. When REST $=1$, the counter is Reset for the duration of REST. In order to release this counter from Reset, a " 0 " must be written to the REST bit. If CSI $=0$ then REST $=0$ automatically.
b) STOP (D1) - The STOP FLAG Only inhibits carries into the 8192 Hz divider stage. There may be up to $122 \mu$ s delay before timing starts or stops after changing this flag; $1=\mathrm{STOP} / 0=$ RUN.


Figure 13
c) $24 / 12(\mathrm{D} 2)-\quad$ This bit is for selection of $24 / 12$ hour time modes. If D2 $=1-24$ hour mode is selected and the $\mathrm{PM} / \mathrm{AM}$ bit is invalid. If $\mathrm{D} 2=0-12$ hour mode is selected and the PM/AM bit is valid.
" $24 / \mathrm{HOUR}$ / Setting of the 24/12 hour bit is as follows:
12 HOUR" 1) REST bit $=1$
2) $24 / 12$ hour bit $=0$ or 1
3) REST bit $=0$

* REST bit must $=1$ to write to the $24 / 12$ hour bit.
d) TEST (D3) - When the TEST flag is a " 1 ", the input to the SECONDS counter comes from the counter/divider stage instead of the 15th divider stage. This makes the SECONDS counter count at 5.4163 kHz instead of 1 Hz . When TEST = 1 (Test Mode) theSTOP \& REST (Reset) flags do not inhibit internal counting. When Hold $=1$ during Test (Test $=1$ ) internal counting is inhibited; however, when the HOLD FLAG goes inactive (Hold $=0$ ) counter updating is not guaranteed.


## TYPICAL APPLICATION INTERFACE WITH MSM6242B AND MICROCONTROLLERS



TYPICAL APPLICATIONS — INTERFACE WITH MSM80C49


Figure 18

## APPLICATION NOTE

## 1. Power Supply



## 2. Adjustment of Frequency


$C_{D}$ to $C_{F}$ are to be set at as described in the figure and the capacitor is to be adjusted to meet the settle frequency of $t_{0}$ and $t_{1}$. If the right oscillation can not be obtained,

1. Check the waveform of $\overline{\mathrm{XT}}$
2. Check $C_{D}$ to $C_{F}$ content
3. Check the noise

(a) (b) : INHIBIT

## 3. $\mathrm{CH}_{1}$ (Chip Select)

$\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ of $\mathrm{CH}_{1}$ has 3 functions.
a) To accomplish the interface with a microcontroller/microprocessor.
b) To inhibit the control bus, data bus and address bus and to reduce input gate pass current in the stand-by mode.
c) To protect internal data when the mode is moved to and from standby mode.

To realize the above functions:
a) More than $4 / 5 \mathrm{~V}_{\mathrm{DD}}$ shoud be applied to the MSM6242B for the interface with a microcontroller/microprocessor in 5 V operation.
b) In moving to the standby mode, $1 / 5 \mathrm{~V}_{\mathrm{DD}}$ should be applied so that all data buses should be disabled. In the standby mode, approx. 0 V should be applied.
c) To and from the standby mode, obey following Timing chart.


## 4. Set SDT.P at Alarm Mode



## TYPICAL APPLICATION — POWER SUPPLY CIRCUIT



## SUPPLEMENTARY DESCRIPTION

- When " 0 " is written to the IRQ FLAG bit, the IRQ FLAG bit is cleared. However, if " 0 " is assigned to the IRQ FLAG bit when written to the other bits, the 30-sec ADJ bit and the HOLD bit, the IRQ FLAG = 1 and was generated before the writing and IRQ FLG = 1 generated in a moment then will be cleared. To avoid this, always set "1" to the IRQ FLAG unless " 0 " is written to it intentionally. By writing " 1 " to it, the IRQ FLAG bit does not become "1".
- Since the IRQ FLAG bit becomes " 1 " in some cases when rewriting either of the $t_{1}, t_{0^{\prime}}$, or ITRPT/STND bit of register $\mathrm{C}_{\mathrm{E}}$, be sure to write " 0 " to the IRQ FLAG bit after writing to make valid the IRQ FLAG $=1$ to be generated after it.
* The relationship between SDT.P OUT and IRQ FLAG bit is shown below:



## PACKAGE DIMENSIONS

(Unit : mm)

(Unit : mm)
SOP24-P-430-1.27-K


Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

| Document <br> No. | Date | Page |  | Description |
| :---: | :---: | :---: | :---: | :--- |
|  |  | Previous <br> Edition | Current <br> Edition |  |
| - | Apr. 1995 | - | - | First edition |
| FEDL6242B-02 | Jun. 17, 2002 | 1 | 1 | Partially changed contents of "Package" of <br> the FEATURES section. |
|  |  |  | - | 20 |
|  |  | - | 21 | Added the Package Dimensions section and <br> the Contents. |

## NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2002 Oki Electric Industry Co., Ltd.


[^0]:    Figure 6 Read Cycle $-\left(A L E=V_{D D}\right)$

[^1]:    Figure 7 Read Cycle - (With Use of ALE)

