
INTEGRATED CIRCUITS

Product specification IC20 Data Handbook 1996 Aug 16

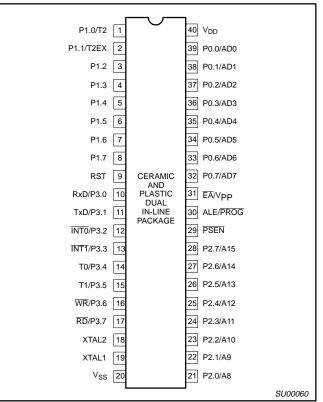
Philips Semiconductors

80C32/87C52

DESCRIPTION

The Philips 80C32/87C52 is a high-performance microcontroller fabricated with Philips high-density CMOS technology. The Philips CMOS technology combines the high speed and density characteristics of HMOS with the low power attributes of CMOS. Philips epitaxial substrate minimizes latch-up sensitivity.

The 87C52 contains an $8k \times 8$ EPROM and the 80C32 is ROMless. Both contain a 256×8 RAM, 32 I/O lines, three 16-bit counter/timers, a six-source, two-priority level nested interrupt structure, a serial I/O port for either multi-processor communications, I/O expansion or full duplex UART, and on-chip oscillator and clock circuits.


In addition, the 80C32/87C52 has two software selectable modes of power reduction—idle mode and power-down mode. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

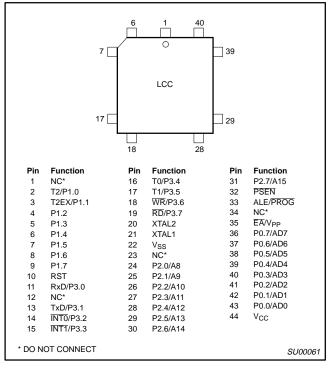
See 80C52/80C54/80C58 datasheet for ROM device specifications.

FEATURES

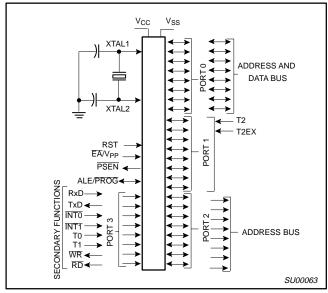
- 80C51 based architecture
- 8032 compatible
 - 8k × 8 EPROM (87C52)
 - ROMless (80C32)
 - 256 × 8 RAM
 - Three 16-bit counter/timers
 - Full duplex serial channel
 - Boolean processor
- Memory addressing capability
 64k ROM and 64k RAM
- Power control modes:
 - Idle mode
- Power-down mode
- CMOS and TTL compatible
- Three speed ranges:
 - 3.5 to 16MHz
 - 3.5 to 24MHz
 - 3.5 to 33MHz
- Five package styles
- Extended temperature ranges
- OTP package available

PIN CONFIGURATIONS

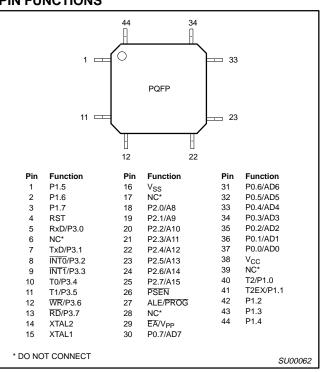
ORDERING INFORMATION


ROMIess	EPROM ¹		TEMPERATURE RANGE °C AND PACKAGE	FREQ MHz	DRAWING NUMBER
P80C32EBP N	P87C52EBP N	OTP	0 to +70, Plastic Dual In-line Package	16	SOT129-1
P80C32EBA A	P87C52EBA A	OTP	0 to +70, Plastic Leaded Chip Carrier	16	SOT187-2
	P87C52EBF FA	UV	0 to +70, Ceramic Dual In-line Package	16	0590B
	P87C52EBL KA	UV	0 to +70, Ceramic Leaded Chip Carrier	16	1472A
P80C32EBB B	P87C52EBB B	OTP	0 to +70, Plastic Quad Flat Pack	16	SOT307-2
P80C32EFP N	P87C52EFP N	OTP	-40 to +85, Plastic Dual In-line Package	16	SOT129-1
P80C32EFA A	P87C52EFA A	OTP	-40 to +85, Plastic Leaded Chip Carrier	16	SOT187-2
	P87C52EFF FA	UV	-40 to +85, Ceramic Dual In-line Package	16	0590B
P80C32EFB B	P87C52EFB B	OTP	-40 to +85, Plastic Quad Flat Pack	16	SOT307-2
P80C32IBP N	P87C52IBP N	OTP	0 to +70, Plastic Dual In-line Package	24	SOT129-1
P80C32IBA A	P87C52IBA A	OTP	0 to +70, Plastic Leaded Chip Carrier	24	SOT187-2
P80C32IBB B			0 to +70, Plastic Quad Flat Pack	24	SOT307-2
	P87C52IBF FA	UV	0 to +70, Ceramic Dual In-line Package	24	0590B
	P87C52IBL KA	UV	0 to +70, Ceramic Leaded Chip Carrier	24	1472A
P80C32IFP N	P87C52IFP N	OTP	-40 to +85, Plastic Dual In-line Package	24	SOT129-1
P80C32IFA A	P87C52IFA A	OTP	-40 to +85, Plastic Leaded Chip Carrier	24	SOT187-2
P80C32IFB B			-40 to +85, Plastic Quad Flat Pack	24	SOT307-2
	P87C52IFF FA	UV	-40 to +85, Ceramic Dual In-line Package	24	0590B
P80C32NBA A			0 to +70, Plastic Leaded Chip Carrier	33	SOT187-2
P80C32NBP N			0 to +70, Plastic Dual In-line Package	33	SOT129-1
P80C32NBB B			0 to +70, Plastic Quad Flat Pack	33	SOT307-2
P80C32NFA A			-40 to +85, Plastic Leaded Chip Carrier	33	SOT187-2
P80C32NFP N			-40 to +85, Plastic Dual In-line Package	33	SOT129-1
P80C32NFB B			-40 to +85, Plastic Quad Flat Pack	33	SOT307-2

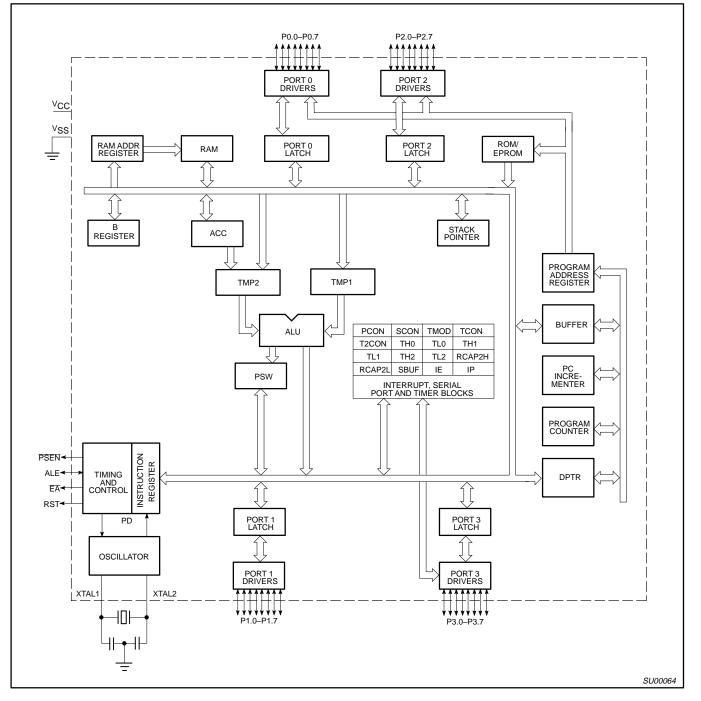
NOTE:


OTP = One Time Programmable EPROM. UV = UV erasable EPROM
 For 33MHz ROM 80C52 operation, see 80C52/80C54/80C58 data sheet.

80C32/87C52


CERAMIC AND PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS

LOGIC SYMBOL



PLASTIC QUAD FLAT PACK PIN FUNCTIONS

80C32/87C52

BLOCK DIAGRAM

SYMBOL

RESET

VALUE

0x00000B

xx000000B

FFH

FFH

00H

00H

00H 00H

CMOS single-chip 8-bit microcontrollers

DIRECT

ADDRESS

MSB

80C32/87C52

LSB

ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0
DPTR: DPH DPL	Data pointer (2 bytes) Data pointer high Data pointer low	83H 82H								
			AF	AE	AD	AC	AB	AA	A9	A8
IE*	Interrupt enable	A8H	EA	-	ET2	ES	ET1	EX1	ET0	EX0
			BF	BE	BD	BC	BB	BA	B9	B8
IP*	Interrupt priority	B8H	-	_	PT2	PS	PT1	PX1	PT0	PX0
			87	86	85	84	83	82	81	80
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
10		0011	ADT	ADU	AD0		ADU	ADZ	ADT	ADO
			97	96	95	94	93	92	91	90
P1*	Port 1	90H	-		-	-	-	-	T2EX	T2
			A7	A6	A5	A4	A3	A2	A1	A0
P2*	Port 2	A0H	A15	A14	A13	A12	A11	A10	A9	A8
			B7	B6	B5	B4	B3	B2	B1	B0
P3*	Port 3	B0H	RD	WR	T1	то	INT1	INTO	TxD	RxD
PCON ¹	Power control	87H	SMOD	-	-	-	GF1	GF0	PD	IDL
			D7	D6	D5	D4	D3	D2	D1	D0
PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	-	Р
RCAP2H# RCAPL#	Capture high Capture low	CBH CAH								
SBUF	Serial data buffer	99H								
			9F	9E	9D	9C	9B	9A	99	98

BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION

 Table 1.
 8XC52 Special Function Registers

DESCRIPTION

0 8 FFH 0 D FFH 0xxxxxxB 0 00H 00H 00H xxxxxxxB 8 SCON* Serial controller 98H SM0 SM1 SM2 REN TB8 RB8 ТΙ RI 00H SP 07H Stack pointer 81H 8F 8E 8D 8C 8B 8A 89 88 TCON* 88H TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H Timer control TF1 CF CE CD CC СВ CA C9 C8 T2CON*# C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 00H Timer 2 control TH0 Timer high 0 8CH 00H TH1 Timer high 1 8DH 00H 00H TH2# Timer high 2 CDH TL0 Timer low 0 8AH 00H 8BH 00H TL1 Timer low 1 TL2# Timer low 2 CCH 00H TMOD Timer mode 89H GATE C/T M1 M0 GATE C/T M1 M0 00H Bit addressable

SFRs are modified from or added to the 80C51 SFRs.

1. Bits GF1, GF0, PD, and IDL of the PCON register are not implemented in the NMOS 8XC52.

80C32/87C52

PIN DESCRIPTION

		PIN NO.		PIN NO.			
MNEMONIC	DIP	LCC	QFP	TYPE	NAME AND FUNCTION		
V _{SS}	20	22	16	I	Ground: 0V reference.		
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle, and power-down operation.		
P0.0–0.7	39–32	43–36	37–30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the 87C52. External pull-ups are required during program verification.		
P1.0-P1.7	1–8	2–9	40–44 1–3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}). Pins P1.0 and P1.1 also. Port 1 also receives the low-order address byte during program memory verification. Port 1 also serves alternate functions for timer 2:		
	1 2	2 3	40 41		T2 (P1.0): Timer/counter 2 external count input.T2EX (P1.1): Timer/counter 2 trigger input.		
P2.0–P2.7	21–28	24–31	18–25	I/O	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.		
P3.0–P3.7	10–17	11, 13–19	5, 7–13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 3 also serves the special features of the 80C51 family, as listed below:		
	10	11	5	1	RxD (P3.0): Serial input port		
	11	13	7	0	TxD (P3.1): Serial output port		
	12	14	8	I.	INTO (P3.2): External interrupt		
	13	15	9	I.	INT1 (P3.3): External interrupt		
	14	16	10	I	T0 (P3.4): Timer 0 external input		
	15	17	11	I I	T1 (P3.5): Timer 1 external input		
	16	18	12	0	WR (P3.6): External data memory write strobe		
	17	19	13	0	RD (P3.7): External data memory read strobe		
RST	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .		
ALE/PROG	30	33	27	I/O	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming.		
PSEN	29	32	26	0	Program Store Enable: The read strobe to external program memory. When the device is executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.		
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: \overrightarrow{EA} must be externally held low to enable the device to fetch code from external program memory locations 0000H to 1FFFH. If \overrightarrow{EA} is held high, the device executes from internal program memory unless the program counter contains an address greater than 1FFFH. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming.		
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.		
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier.		

80C32/87C52

DIFFERENCES FROM THE 80C51

Special Function Registers

The special function register space is the same as the 80C51 except that the 80C32/87C52 contains the additional special function registers T2CON, RCAP2L, RCAP2H, TL2, and TH2. Since the standard 80C51 on-chip functions are identical in the 8XC52, the SFR locations, bit locations, and operation are likewise identical. The only exceptions are in the interrupt mode and interrupt priority SFRs (see Table 1).

Timer/Counters

In addition to timer/counters 0 and 1 of the 80C51, the 80C32/87C52 contains timer/counter 2. Like timers 0 and 1, timer 2 can operate as either an event timer or as an event counter. This is selected by bit C/T2 in the special function register T2CON (see Figure 1). It has three operating modes: capture, auto-load, and baud rate generator, which are selected by bits in the T2CON as shown in Table 2.

In the Capture Mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or counter which upon overflowing sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. (RCAP2L and RCAP2H are new special function registers in the 80C52.) In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2 like TF2 can generate an interrupt. The Capture Mode is illustrated in Figure 2.

In the auto-reload mode, there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0

transition at external input T2EX will also trigger the 16-bit reload and set EXF2. The auto-reload mode is illustrated in Figure 3.

The baud rate generation mode is selected by RCLK = 1 and/or TCLK = 1. It will be described in conjunction with the serial port.

Serial Port

The serial port of the 8XC52 is identical to that of the 80C51 except that counter/timer 2 can be used to generate baud rates.

In the 8XC52, Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (see Figure 1). Note that the baud rate for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer into its baud rate generator mode, as shown in Figure 4.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate as follows:

Modes 1, 3 Baud Rate =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The timer can be configured for either "timer" or "counter" operation. In the most typical applications, it is configured for "timer" operation (C/T2 = 0). "Timer" operation is a little different for Timer 2 when it's being used as a baud rate generator. Normally, as a timer it would increment every machine cycle (thus at 1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time (thus at 1/2 the oscillator frequency). In that case the baud rate is given by the formula:

```
Modes 1, 3 Baud Rate = \frac{\text{Oscillator Frequency}}{32 \times [65536 - (\text{RCAP2H}, \text{RCAP2L})]}
```

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

		(MSB)							(LSB)				
		TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2				
Symbol	Position	Name ar	nd Signific	ance									
TF2	T2CON.7	Timer 2	overflow fl	ag set by a	Timer 2 ov	verflow and	must be c	leared by s	software. TF2	will not be s	et when ei	ther RCLK	or TCLK =
EXF2	T2CON.6								negative tran 2 interrupt ro				
RCLK	T2CON.5					e serial por he receive		ner 2 overf	flow pulses fo	r its receive	clock in m	odes 1 and	3. RCLK =
TCLK	T2CON.4					ne serial po the transm		mer 2 over	rflow pulses f	or its transmi	it clock in n	nodes 1 and	d 3. TCLK :
EXEN2	T2CON.3								cur as a resul events at T2		e transitio	n on T2EX i	if Timer 2 is
TR2	T2CON.2	Start/st	op control f	or Timer 2.	A logic 1 s	tarts the tin	ner.						
C/T2	T2CON.1	Timer o	0 = l	elect. (Time nternal time External eve	er (ÓSC/12) (falling edg	je triggered	d).					
CP/RL2	T2CON.0	occur e	ither with T		flows or ne	egative tran	sitions at T	2EX when	ns at T2EX if n EXEN2 = 1.				

Figure 1. Timer/Counter 2 (T2CON) Control Register

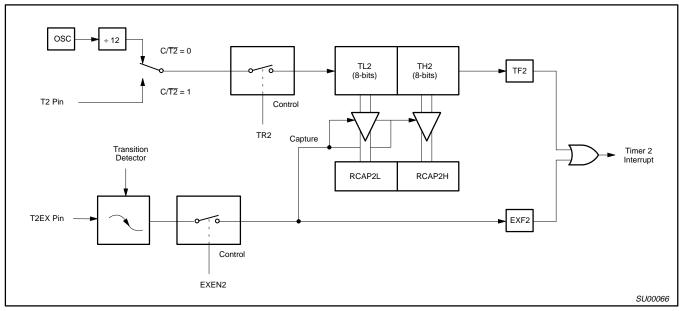


Figure 2. Timer 2 in Capture Mode

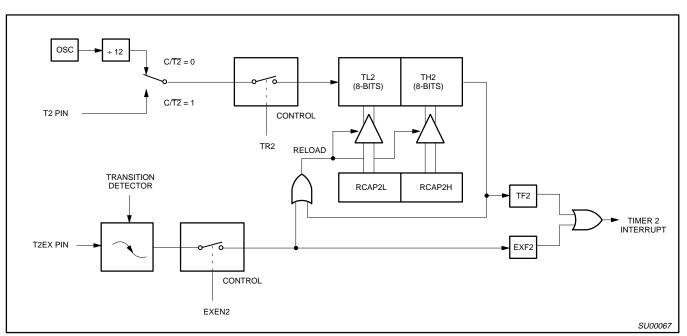


Figure 3. Timer 2 in Auto-Reload Mode

80C32/87C52

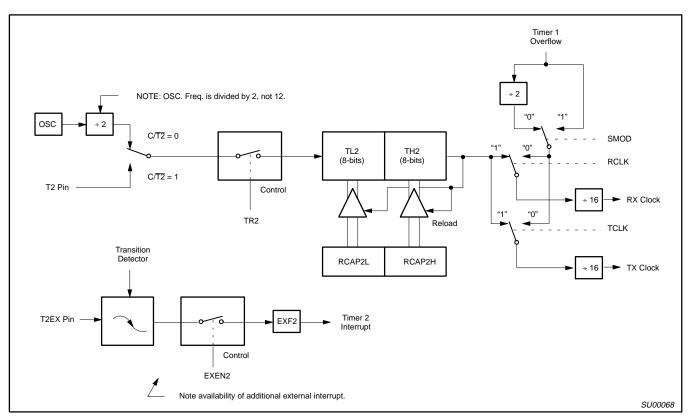


Figure 4. Timer 2 in Baud Rate Generator Mode

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud rate generator
X	Х	0	(off)

Table 2. Timer 2 Operating Modes

Timer 2 as a baud rate generator is shown in Figure 4. This figure is valid only if RCLK + TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Therefore, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2 = 1) in "timer" function in the baud rate generator mode, one should not try to read or write TH2 or TL2. Under these conditions the timer is being incremented every state time, and the results of a read or write may not be accurate. The RCAP registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. Turn the timer off (clear TR2) before accessing the Timer 2 or RCAP registers, in this case.

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. See Table 3 for set-up of timer 2 as a timer. See Table 4 for set-up of timer 2 as a counter.

Using Timer/Counter 2 to Generate Baud Rates

For this purpose, Timer 2 must be used in the baud rate generating mode. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is:

Baud Rate =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

And if it is being clocked internally, the baud rate is:

Baud Rate =
$$\frac{\text{Oscillator Frequency}}{32 \times [65536 - (\text{RCAP2H}, \text{RCAP2L})]}$$

To obtain the reload value for RCAP2H and RCA02L, the above equation can be rewritten as:

 $RCAP2H, RCAP2L = 65536 - \frac{Oscillator Frequency}{32 \times Baud Rate}$

80C32/87C52

Interrupts

The 80C32/87C52 has 6 interrupt sources. All except TF2 and EXF2 are identical sources to those in the 80C51.

The Interrupt Enable Register and the Interrupt Priority Register are modified to include the additional 80C32/87C52 interrupt sources. The operation of these registers is identical to the 80C51.

In the 80C32/87C52, the Timer 2 Interrupt is generated by the logical OR of TF2 and EXF2. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it has been set or cleared

by hardware. That is, interrupts can be generated or pending interrupts can be canceled in software.

The interrupt vector addresses and the interrupt priority for requests in the same priority level are given in the following:

	Source	Vector	Priority Within
		Address	Level
1.	IE0	0003H	(highest)
2.	TF0	000BH	
3.	IE1	0013H	
4.	TF1	001BH	
5.	RI + TI	0023H	
6.	TF2 + EXF2	002BH	(lowest)

Note that they are identical to those in the 80C51 except for the addition of the Timer 2 (TF1 and EXF2) interrupt at 002BH and at the lowest priority within a level.

Table 3. Timer 2 as a Timer

MODE	T20	CON
	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)
16-bit Auto-Reload	00H	08H
16-bit Capture	01H	09H
Baud rate generator receive and transmit same baud rate	34H	36H
Receive only	24H	26H
Transmit only	14H	16H

Table 4. Timer 2 as a Counter

MODE	TM	TMOD NTERNAL CONTROL (Note 1) (Note 2)	
	INTERNAL CONTROL (Note 1)		
16-bit	02H	0AH	
Auto-Reload	03H	0BH	

NOTES:

1. Capture/reload occurs only on timer/counter overflow.

2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when timer 2 is used in the baud rate generator mode.

80C32/87C52

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the Logic Symbol, page 4.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed.

RESET

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-up reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles.

IDLE MODE

In idle mode, the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

POWER-DOWN MODE

In the power-down mode, the oscillator is stopped and the instruction to invoke power-down is the last instruction executed. Only the contents of the on-chip RAM are preserved. A hardware reset is the only way to terminate the power-down mode. the control bits for the reduced power modes are in the special function register PCON.

DESIGN CONSIDERATIONS

At power-on, the voltage on $V_{\mbox{CC}}$ and RST must come up at the same time for a proper start-up.

Table 5 shows the state of I/O ports during low current operating modes.

As a precaution to coming out of an unexpected power down, INTO and INT1 should be disabled prior to enterring power down.

Table 5. External Pin Status During Idle and Power-Down Modes

MODE	PROGRAM MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

80C32/87C52

Electrical Deviations from Commercial Specifications for Extended Temperature Range (87C52)

DC and AC parameters not included here are the same as in the commercial temperature range table.

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = -40^{\circ}C$ to +85°C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$

		TEST	LIN	IITS	
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{IL}	Input low voltage, except EA		-0.5	0.2V _{CC} -0.15	V
V _{IL1}	Input low voltage to EA		0	0.2V _{CC} -0.35	V
V _{IH}	Input high voltage, except XTAL1, RST		0.2V _{CC} +1	V _{CC} +0.5	V
V _{IH1}	Input high voltage to XTAL1, RST		0.7V _{CC} +0.1	V _{CC} +0.5	V
I _{IL}	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.45V		-75	μA
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3	V _{IN} = 2.0V		-750	μA
Icc	Power supply current: Active mode Idle mode Power-down mode	V _{CC} = 4.5–5.5V, Frequency range = 3.5 to 16MHz		32 5 50	mA mA μA

ABSOLUTE MAXIMUM RATINGS^{1, 2, 3}

PARAMETER	RATING	UNIT
Operating temperature under bias	0 to +70 or -40 to +85	°C
Storage temperature range	-65 to +150	°C
Voltage on \overline{EA}/V_{PP} pin to V_{SS}	0 to +13.0	V
Voltage on any other pin to V_{SS}	-0.5 to +6.5	V
Maximum I _{OL} per I/O pin	15	mA
Power dissipation (based on package heat transfer limitations, not device power consumption)	1.5	W

NOTES:

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied.

2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.

3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$ (87C52)

 $T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ or } -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V (80C32)$

		TEST		LIMITS			
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP ¹	MAX	UNIT	
V _{IL}	Input low voltage, except EA ⁷		-0.5		0.2V _{CC} -0.1	V	
V _{IL1}	Input low voltage to EA ⁷		0		0.2V _{CC} -0.3	V	
V _{IH}	Input high voltage, except XTAL1, RST ⁷		0.2V _{CC} +0.9		V _{CC} +0.5	V	
V _{IH1}	Input high voltage, XTAL1, RST ⁷		0.7V _{CC}		V _{CC} +0.5	V	
V _{OL}	Output low voltage, ports 1, 2, 3 ⁹	I _{OL} = 1.6mA ²			0.45	V	
V _{OL1}	Output low voltage, port 0, ALE, PSEN ⁹	$I_{OL} = 3.2 \text{mA}^2$			0.45	V	
V _{OH}	Output high voltage, ports 1, 2, 3, ALE, PSEN ³	$I_{OH} = -60\mu A,$ $I_{OH} = -25\mu A$ $I_{OH} = -10\mu A$	2.4 0.75V _{CC} 0.9V _{CC}			V V V	
V _{OH1}	Output high voltage (port 0 in external bus mode)	I _{OH} = -800μA, I _{OH} = -300μA I _{OH} = -80μA	2.4 0.75V _{CC} 0.9V _{CC}			V V V	
IIL	Logical 0 input current, ports 1, 2, 3 ⁷	V _{IN} = 0.45V			-50	μA	
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁷	See note 4			-650	μΑ	
ILI	Input leakage current, port 0	$V_{IN} = V_{IL} \text{ or } V_{IH}$			±10	μA	
I _{CC}	Power supply current:7 Active mode @ 16MHz5 Idle mode @ 16MHzPower-down mode $T_{amb} = 0$ to 70°C $T_{amb} = -40$ to +85°C	See note 6		11.5 1.3 3	32 5 50 75	mA mA μA μA	
R _{RST}	Internal reset pull-down resistor		50		300	kΩ	
C _{IO}	Pin capacitance ¹⁰				15	pF	

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.

- 2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I_{OL} can exceed these conditions provided that no single output sinks more than 5mA and no more than two outputs exceed the test conditions.
- Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the 0.9V_{CC} specification when the address bits are stabilizing.
- Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2V.
- 5. I_{CCMAX} at other frequencies is given by: Active mode: $I_{CCMAX} = 1.5 \times FREQ + 8.0$: Idle mode: $I_{CCMAX} = 0.14 \times FREQ + 2.31$,

where FREQ is the external oscillator frequency in MHz. I_{CCMAX} is given in mA. See Figure 12.

- 6. See Figures 13 through 16 for $I_{\mbox{\scriptsize CC}}$ test conditions.
- 7. These values apply only to $T_{amb} = 0^{\circ}C$ to $+70^{\circ}C$. For $T_{amb} = -40^{\circ}C$ to $+85^{\circ}C$, see table on previous page.
- 8. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.
- 9. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 15mA (*NOTE: This is 85°C specification.)

	1011/1 (
Maximum IOL per 8-bit port:	26mA
Maximum total IOL for all outputs:	67mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

10. This limit is for plastic packages. For ceramic packages, the maximum limit is 20pF.

80C32/87C52

CMOS single-chip 8-bit microcontrollers

AC ELECTRICAL CHARACTERISTICS T_{amb} = 0°C to +70°C or -40°C to +85°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V (87C52)^{1, 2, 3}

			16MHz	CLOCK	VARIABL	E CLOCK	
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	
1/t _{CLCL}	5	Oscillator frequency Speed versions : E			3.5	16	MHz
t _{LHLL}	5	ALE pulse width	85		2t _{CLCL} -40		ns
t _{AVLL}	5	Address valid to ALE low	22		t _{CLCL} -40		ns
t _{LLAX}	5	Address hold after ALE low	32		t _{CLCL} -30		ns
t _{LLIV}	5	ALE low to valid instruction in		150		4t _{CLCL} -100	ns
t _{LLPL}	5	ALE low to PSEN low	32		t _{CLCL} -30		ns
t _{PLPH}	5	PSEN pulse width	142		3t _{CLCL} -45		ns
t _{PLIV}	5	PSEN low to valid instruction in		82		3t _{CLCL} -105	ns
t _{PXIX}	5	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	5	Input instruction float after PSEN		37		t _{CLCL} -25	ns
t _{AVIV}	5	Address to valid instruction in		207		5t _{CLCL} -105	ns
t _{PLAZ}	5	PSEN low to address float		10		10	ns
Data Mem	ory	•			•	-	
t _{RLRH}	6, 7	RD pulse width	275		6t _{CLCL} -100		ns
t _{WLWH}	6, 7	WR pulse width	275		6t _{CLCL} -100		ns
t _{RLDV}	6, 7	RD low to valid data in		147		5t _{CLCL} -165	ns
t _{RHDX}	6, 7	Data hold after RD	0		0		ns
t _{RHDZ}	6, 7	Data float after RD		65		2t _{CLCL} –60	ns
t _{LLDV}	6, 7	ALE low to valid data in		350		8t _{CLCL} -150	ns
t _{AVDV}	6, 7	Address to valid data in		397		9t _{CLCL} -165	ns
t _{LLWL}	6, 7	ALE low to RD or WR low	137	239	3t _{CLCL} –50	3t _{CLCL} +50	ns
t _{AVWL}	6, 7	Address valid to WR low or RD low	122		4t _{CLCL} -130		ns
t _{QVWX}	6, 7	Data valid to WR transition	13		t _{CLCL} –50		ns
t _{WHQX}	6, 7	Data hold after WR	13		t _{CLCL} –50		ns
t _{QVWH}	7	Data valid to WR high	287		7t _{CLCL} -150		ns
t _{RLAZ}	6, 7	RD low to address float		0		0	ns
t _{WHLH}	6, 7	RD or WR high to ALE high	23	103	t _{CLCL} -40	t _{CLCL} +40	ns
External C	lock	•	•	•			
t _{CHCX}	9	High time	20		20	t _{CLCL} -t _{CLCX}	ns
t _{CLCX}	9	Low time	20		20	t _{CLCL} -t _{CHCX}	ns
t _{CLCH}	9	Rise time		20		20	ns
tCHCL	9	Fall time		20	1	20	ns
Shift Regi	ster	•	•	•	•	-	
t _{XLXL}	8	Serial port clock cycle time	750		12t _{CLCL}		ns
t _{QVXH}	8	Output data setup to clock rising edge	492	1	10t _{CLCL} -133		ns
t _{XHQX}	8	Output data hold after clock rising edge	8		2t _{CLCL} -117		ns
t _{XHDX}	8	Input data hold after clock rising edge	0	1	0		ns
t _{XHDV}	8	Clock rising edge to input data valid		492		10t _{CLCL} -133	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.

4. See application note AN457 for external memory interface.

^{3.} Interfacing the 80C32/52 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ or } -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V^{1, 2, 3}$

			24MHz	CLOCK	VARIABL	E CLOCK	33MHz	CLOCK	
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	דואט
1/t _{CLCL}	5	Oscillator frequency							
		Speed versions :I :N			3.5	24	3.5	33	MHz
tLHLL	5	ALE pulse width	43		2t _{CLCL} -40		21		ns
t _{AVLL}	5	Address valid to ALE low	17		t _{CLCL} -25		5		ns
t _{LLAX}	5	Address hold after ALE low	17		t _{CLCL} -25		5		ns
t _{LLIV}	5	ALE low to valid instruction in		102	ICLUL 20	4t _{CLCL} -65	<u> </u>	56	ns
t _{LLPL}	5	ALE low to PSEN low	17	102	t _{CLCL} -25		5	00	ns
t _{PLPH}	5	PSEN pulse width	80		3t _{CLCL} -45		<u> </u>	46	ns
	5	PSEN low to valid instruction in		65		3t _{CLCL} -60		31	ns
t _{PXIX}	5	Input instruction hold after PSEN	0	00	0		0	01	ns
t _{PXIZ}	5	Input instruction float after PSEN		17	Ŭ	t _{CLCL} -25	- Ŭ	5	ns
t _{AVIV}	5	Address to valid instruction in		128		5t _{CLCL} -80		72	ns
	5	PSEN low to address float		10		10		10	ns
t _{PLAZ} Data Mem	-			10		10		10	113
	6, 7	RD pulse width	150	I	6t _{CLCL} -100		82		ns
t _{RLRH}	6, 7	WR pulse width	150		6t _{CLCL} -100		82		ns
t _{WLWH} t _{RLDV}	6, 7	RD low to valid data in	130	118		5t _{CLCL} -90	02	62	ns
	6, 7	Data hold after RD	0	110	0		0	02	ns
t _{RHDZ}	6, 7	Data float after RD	<u> </u>	55	Ŭ	2t _{CLCL} -28	<u> </u>	33	ns
	6, 7	ALE low to valid data in		183		8t _{CLCL} -150		92	ns
t _{AVDV}	6, 7	Address to valid data in		210		9t _{CLCL} -165		108	ns
	6, 7	ALE low to RD or WR low	75	175	3t _{CLCL} -50	3t _{CLCL} +50	41	141	ns
	6, 7	Address valid to WR low or RD low	92		4t _{CLCL} -75		46		ns
t _{QVWX}	6, 7	Data valid to WR transition	12		t _{CLCL} -30		0.3		ns
t _{WHQX}	6, 7	Data hold after WR	17		t _{CLCL} -25		5		ns
t _{QVWH}	7	Data valid to WR high	162		7t _{CLCL} -130		82		ns
t _{RLAZ}	6, 7	RD low to address float		0		0		0	ns
	6, 7	RD or WR high to ALE high	17	67	t _{CLCL} -25	t _{CLCL} +25	5	5	ns
				0,	CLUL 20		ů	Ű	110
tснсх	9	High time	17		17	t _{CLCL} -t _{CLCX}			ns
tCLCX	9	Low time	17		17				ns
t _{CLCH}	9	Rise time		5		5			ns
t _{CHCL}	9	Fall time		5		5		1	ns
Shift Regi	-	1			1			1	
t _{XLXL}	8	Serial port clock cycle time	505		12t _{CLCL}		363		ns
t _{QVXH}	8	Output data setup to clock rising edge	283		10t _{CLCL} -133		170	1	ns
tXHQX	8	Output data hold after clock rising edge	3		2t _{CLCL} -80		19		ns
t _{XHDX}	8	Input data hold after clock rising edge	0		0		0		ns
t _{XHDV}	8	Clock rising edge to input data valid	-	283	-	10t _{CLCL} -133	-	170	ns

NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.
 Interfacing the 8XC52 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.
 Variable clock is specified for oscillator frequencies greater than 16MHz to 33MHz. For frequencies equal or less than 16MHz, see 16MHz

"AC Electrial Characteristics", page 15.

80C32/87C52

CMOS single-chip 8-bit microcontrollers

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- $C \ Clock$
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE

- P PSEN
- Q Output data
- R RD signal
- t Time
- V <u>Vali</u>d
- W- WR signal
- $X \ No \ longer \ a \ valid \ logic \ level$
- Z Float
- $\begin{array}{l} \textbf{Examples:} t_{\text{AVLL}} = \text{Time for address valid to ALE low.} \\ t_{\text{LLPL}} = \text{Time for ALE low to } \overline{\text{PSEN}} \text{ low.} \end{array}$

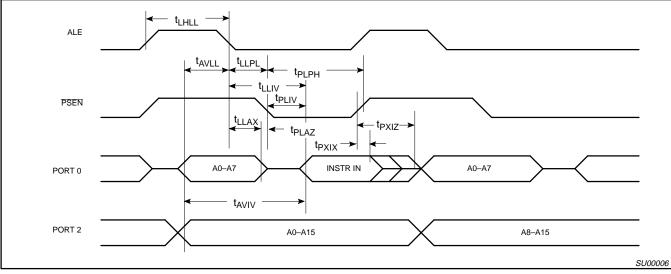


Figure 5. External Program Memory Read Cycle

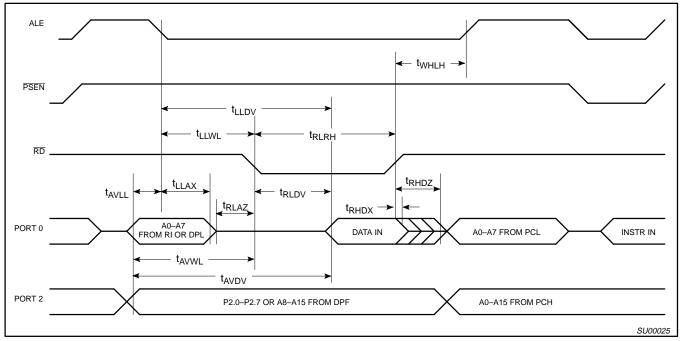


Figure 6. External Data Memory Read Cycle

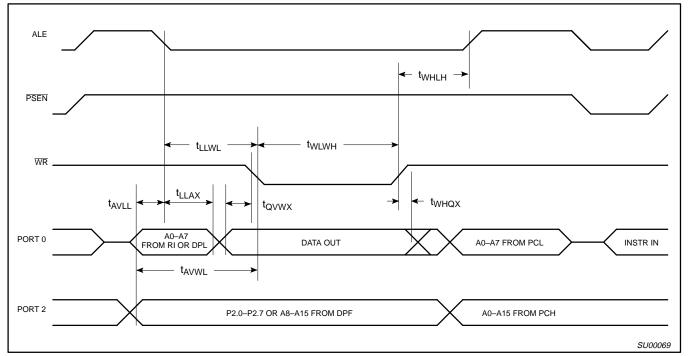


Figure 7. External Data Memory Write Cycle

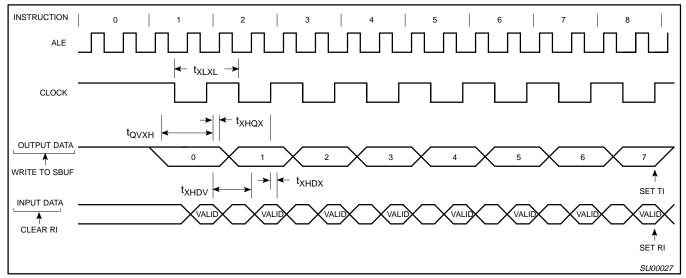
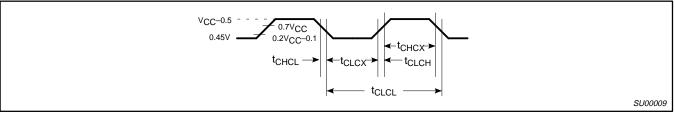
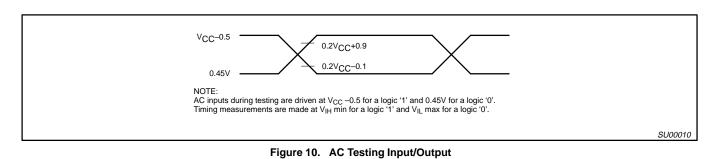
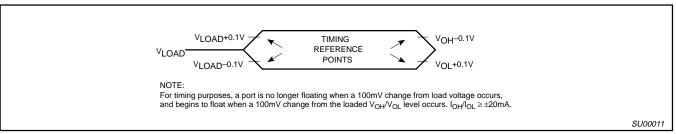
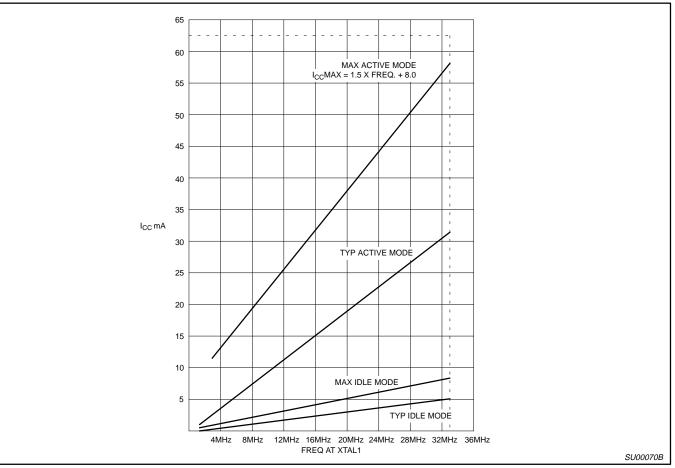
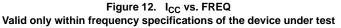
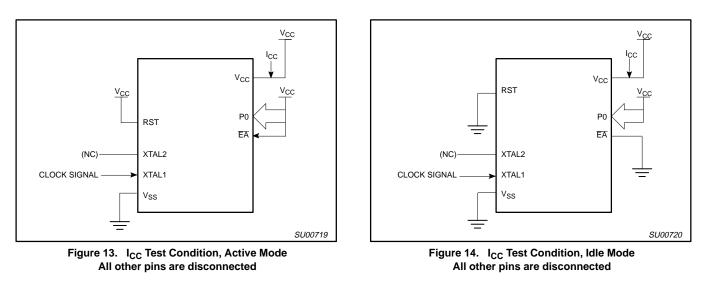
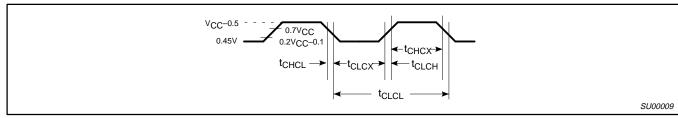


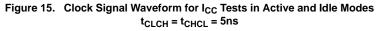
Figure 8. Shift Register Mode Timing


Figure 9. External Clock Drive







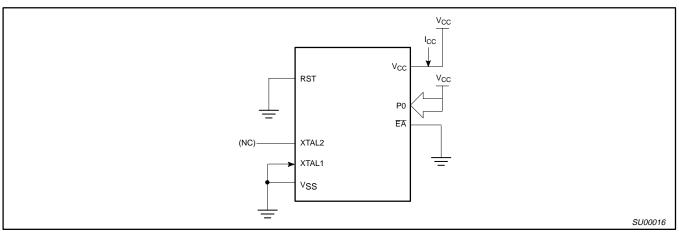


Figure 16. I_{CC} Test Condition, Power Down Mode All other pins are disconnected. V_{CC} = 2V to 5.5V

80C32/87C52

EPROM CHARACTERISTICS

The 87C52 is programmed by using a modified Quick-Pulse ProgrammingTM algorithm. It differs from older methods in the value used for V_{PP} (programming supply voltage) and in the width and number of the ALE/PROG pulses.

The 87C52 contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as an 87C52 manufactured by Philips.

Table 6 shows the logic levels for reading the signature byte, and for programming the program memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse programming are shown in Figures 17 and 18. Figure 19 shows the circuit configuration for normal program memory verification.

Quick-Pulse Programming

The setup for microcontroller quick-pulse programming is shown in Figure 17. Note that the 87C52 is running with a 4 to 6MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers.

The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 17. The code byte to be programmed into that location is applied to port 0. RST, <u>PSEN</u> and pins of ports 2 and 3 specified in Table 6 are held at the 'Program Code Data' levels indicated in Table 6. The ALE/PROG is pulsed low 25 times as shown in Figure 18.

To program the encryption table, repeat the 25 pulse programming sequence for addresses 0 through 1FH, using the 'Pgm Encryption Table' levels. Do not forget that after the encryption table is programmed, verification cycles will produce only encrypted data.

To program the security bits, repeat the 25 pulse programming sequence using the 'Pgm Security Bit' levels. After one security bit is programmed, further programming of the code memory and encryption table is disabled. However, the other security bit can still be programmed.

Note that the \overline{EA}/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage can cause permanent damage to the device. The V_{PP} source should be well regulated and free of glitches and overshoot.

Program Verification

If security bit 2 has not been programmed, the on-chip program memory can be read out for program verification. The address of the program memory locations to be read is applied to ports 1 and 2 as shown in Figure 19. The other pins are held at the 'Verify Code Data' levels indicated in Table 6. The contents of the address location will be emitted on port 0. External pull-ups are required on port 0 for this operation.

If the encryption table has been programmed, the data presented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the encryption table contents in order to correctly decode the verification data. The encryption table itself cannot be read out.

Reading the Signature Bytes

The signature bytes are read by the same procedure as a normal verification of locations 030H and 031H, except that P3.6 and P3.7 need to be pulled to a logic low. The values are: (030H) = 15H indicates manufactured by Philips (031H) = 97H indicates 87C52

Program/Verify Algorithms

Any algorithm in agreement with the conditions listed in Table 6, and which satisfies the timing specifications, is suitable.

Erasure Characteristics

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelengths shorter than approximately 4,000 angstroms. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room level fluorescent lighting) could cause inadvertent erasure. For this and secondary effects, it is recommended that an opaque label be placed over the window. For elevated temperature or environments where solvents are being used, apply Kapton tape Fluorglas part number 2345–5, or equivalent.

The recommended erasure procedure is exposure to ultraviolet light (at 2537 angstroms) to an integrated dose of at least 15W-s/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 20 to 39 minutes, at a distance of about 1 inch, should be sufficient.

Erasure leaves the array in an all 1s state.

MODE	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.7	P2.6	P3.7	P3.6
Read signature	1	0	1	1	0	0	0	0
Program code data	1	0	0*	V _{PP}	1	0	1	1
Verify code data	1	0	1	1	0	0	1	1
Pgm encryption table	1	0	0*	V _{PP}	1	0	1	0
Pgm security bit 1	1	0	0*	V _{PP}	1	1	1	1
Pgm security bit 2	1	0	0*	V _{PP}	1	1	0	0

Table 6. EPROM Programming Modes

NOTES:

^{1. &#}x27;0' = Valid low for that pin, '1' = valid high for that pin.

^{2.} $V_{PP} = 12.75V \pm 0.25V.$

^{3.} $V_{CC} = 5V \pm 10\%$ during programming and verification.

 ^{*}ALE/PROG receives 25 programming pulses while V_{PP} is held at 12.75V. Each programming pulse is low for 100μs (±10μs) and high for a minimum of 10μs.

[™]Trademark phrase of Intel Corporation.

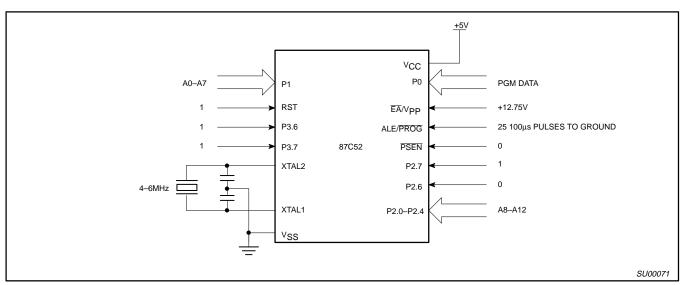


Figure 17. Programming Configuration

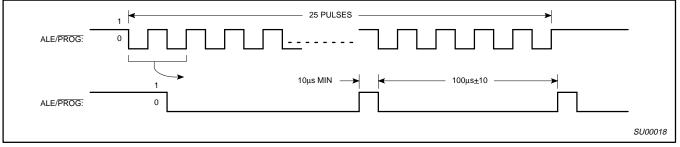
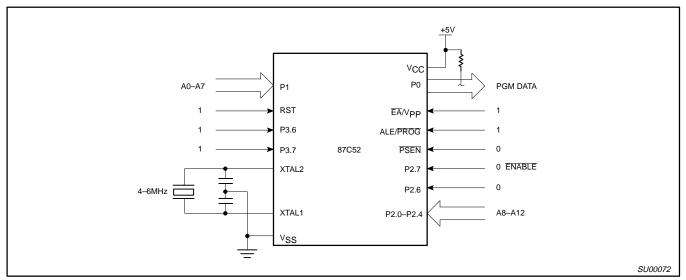
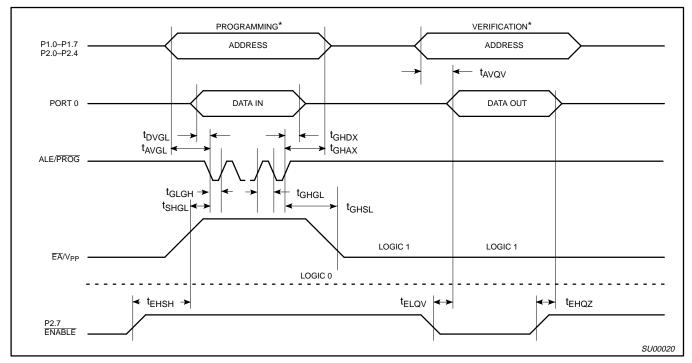


Figure 18. PROG Waveform




Figure 19. Program Verification

80C32/87C52

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 $T_{amb} = 21^{\circ}C$ to +27°C, $V_{CC} = 5V\pm10\%$, $V_{SS} = 0V$ (See Figure 20)

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{PP}	Programming supply voltage	12.5	13.0	V
I _{PP}	Programming supply current		50	mA
1/t _{CLCL}	Oscillator frequency	4	6	MHz
t _{AVGL}	Address setup to PROG low	48t _{CLCL}		
t _{GHAX}	Address hold after PROG	48t _{CLCL}		
t _{DVGL}	Data setup to PROG low	48t _{CLCL}		
t _{GHDX}	Data hold after PROG	48t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) high to VPP	48t _{CLCL}		
t _{SHGL}	V _{PP} setup to PROG low	10		μs
t _{GHSL}	V _{PP} hold after PROG	10		μs
t _{GLGH}	PROG width	90	110	μs
t _{AVQV}	Address to data valid		48t _{CLCL}	
t _{ELQZ}	ENABLE low to data valid		48t _{CLCL}	
t _{EHQZ}	Data float after ENABLE	0	48t _{CLCL}	
t _{GHGL}	PROG high to PROG low	10		μs

NOTE:

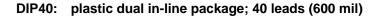
FOR PROGRAMMING VERIFICATION SEE FIGURE 17.

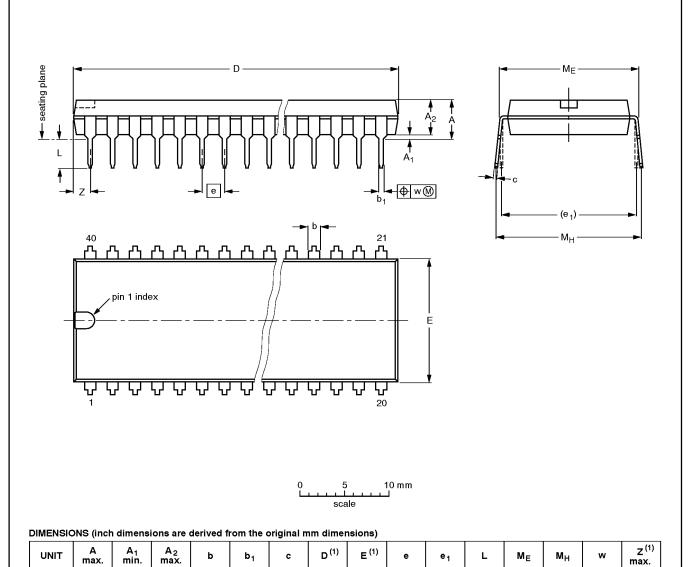
FOR VERIFICATION CONDITIONS SEE FIGURE 19.

4.7

0.19

mm


inches


Note

0.51

0.020

CMOS single-chip 8-bit microcontrollers

Product specification

SOT129-1

80C32/87C52

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

4.0

0.16

1.70

1.14

0.067

0.045

0.53

0.38

0.021

0.015

0.36

0.23

0.014

0.009

52.50

51.50

2.067

2.028

14.1

13.7

0.56

0.54

2.54

0.10

15.24

0.60

3.60

3.05

0.14

0.12

15.80

15.24

0.62

0.60

17.42

15.90

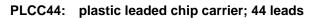
0.69

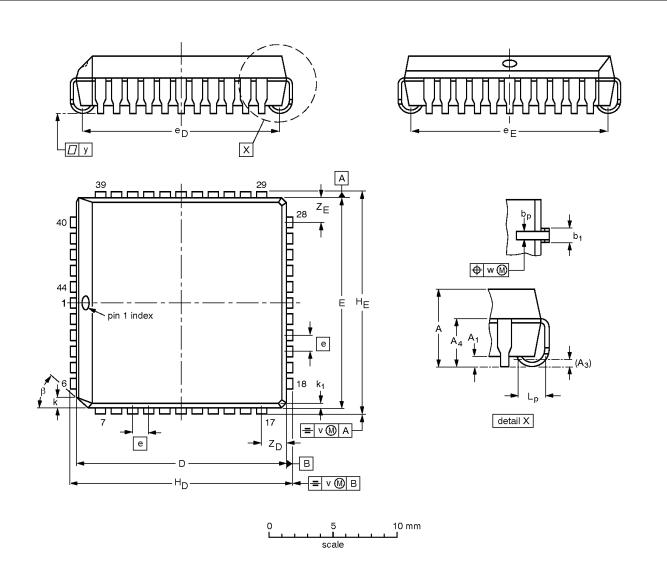
0.63

0.254

0.01

2.25

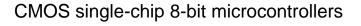

0.089

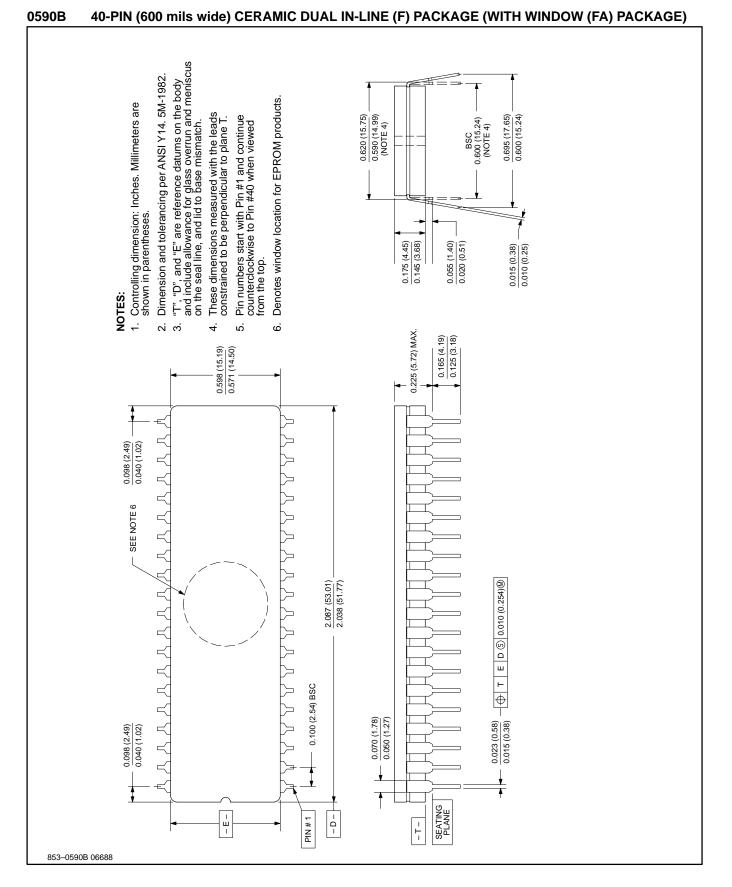

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT129-1	051G08	MO-015AJ			-92-11-17 95-01-14

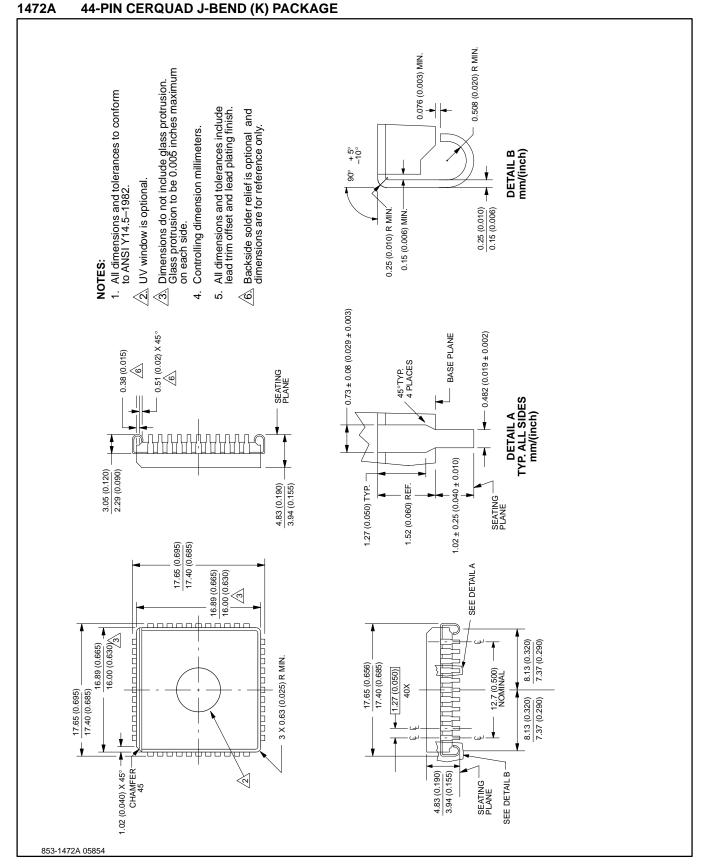
SOT187-2

CMOS single-chip 8-bit microcontrollers

80C32/87C52

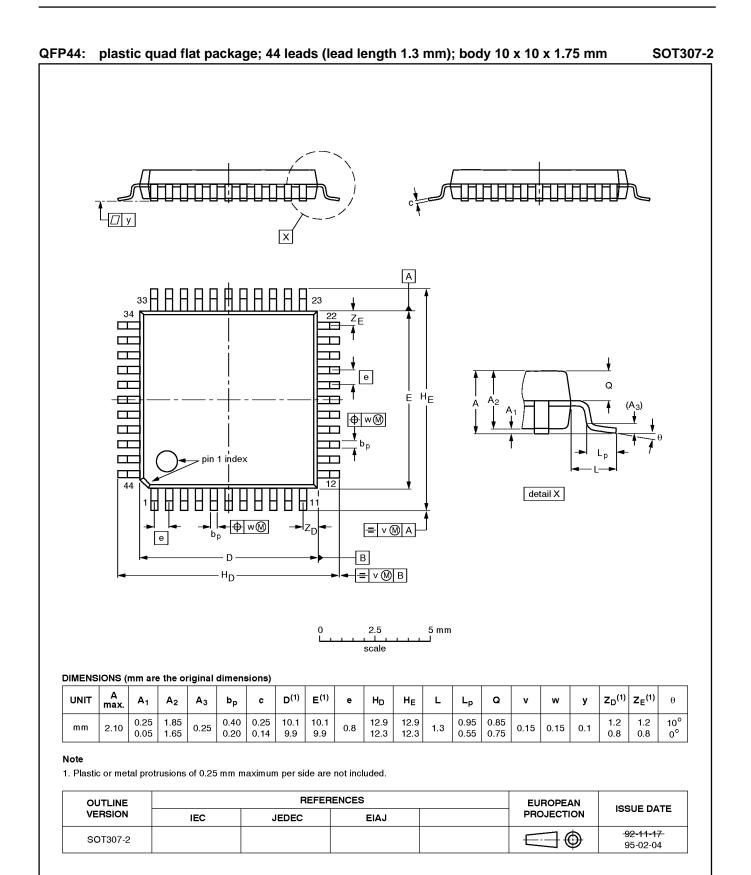

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)


UNIT	Α	A ₁ min.	Α3	A ₄ max.	bp	b ₁	D ⁽¹⁾	E ⁽¹⁾	е	е _D	еЕ	HD	Η _E	k	k ₁ max.	Lp	v	w	у	Z _D ⁽¹⁾ max.	Z _E ⁽¹⁾ max.	β
mm	4.57 4.19	0.51	0.25	3.05	0.53 0.33			16.66 16.51		16.00 14.99					0.51	1.44 1.02	0.18	0.18	0.10	2.16	2.16	45 ⁰
inches	0.180 0.165	0.020	0.01					0.656 0.650	0.05	0.630 0.590	0.630 0.590	0.695 0.685	0.695 0.685	0.048 0.042	0.020	0.057 0.040	0.007	0.007	0.004	0.085	0.085	


Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE		REFEF	RENCES		EUROPEAN	ISSUE DATE	
VERSION	ERSION IEC JEDEC EIAJ					1550E DATE	
SOT187-2	112E10	MO-047AC				-92-11-17 95-02-25	



.....

CMOS single-chip 8-bit microcontrollers

Philips Semiconductors

80C32/87C52

1996 Aug 16

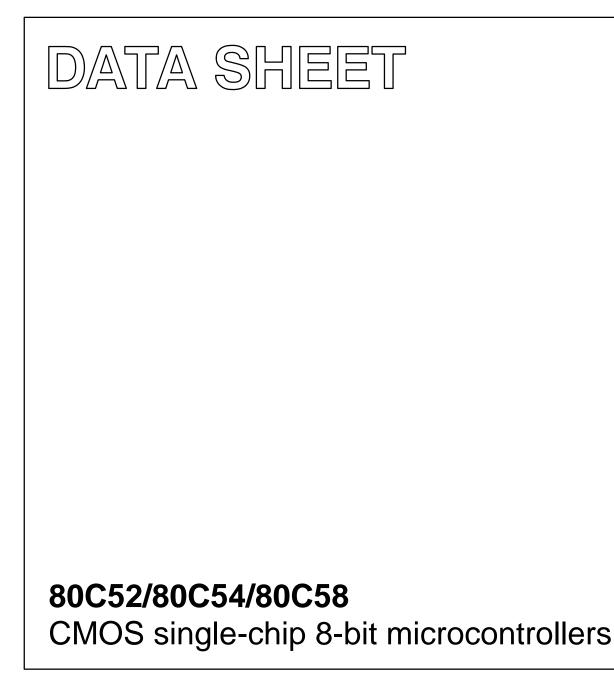
80C32/87C52

NOTES

80C32/87C52

	DEFINITIONS									
Data Sheet Identification	Product Status	Definition								
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.								
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.								
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.								

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.


LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1996 All rights reserved. Printed in U.S.A.

INTEGRATED CIRCUITS

Product specification

IC20 Data Handbook

1996 Aug 16

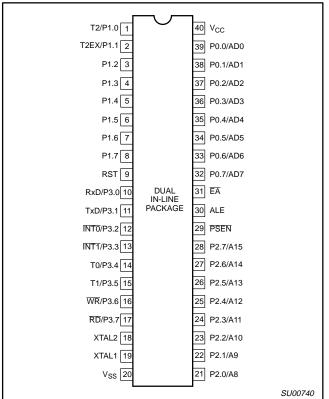
PHILIPS

80C52/80C54/80C58

DESCRIPTION

The 80C52/80C54/80C58 Single-Chip 8-Bit Microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The 80C52/80C54/80C58 has the same instruction set as the 80C51.

This device provides architectural enhancements that make it applicable in a variety of applications for general control systems. The 80C52 contains $8k \times 8$ ROM memory, the 80C54 contains $16k \times 8$ ROM memory, and 80C58 contains $32k \times 8$ ROM memory, a volatile 256×8 read/write data memory, four 8-bit I/O ports, three 16-bit timer/event counters, a multi-source, four-priority-level, nested interrupt structure, an enhanced UART and on-chip oscillator and timing circuits. For systems that require extra capability, the 80C52/54/58 can be expanded using standard TTL compatible memories and logic.

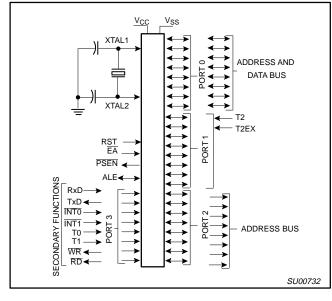

Its added features make it an even more powerful microcontroller for applications that require pulse width modulation, high-speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multiprocessor communications.

See 87C52/80C32 and 87C54/87C58 data sheets for EPROM and ROMless devices.

FEATURES

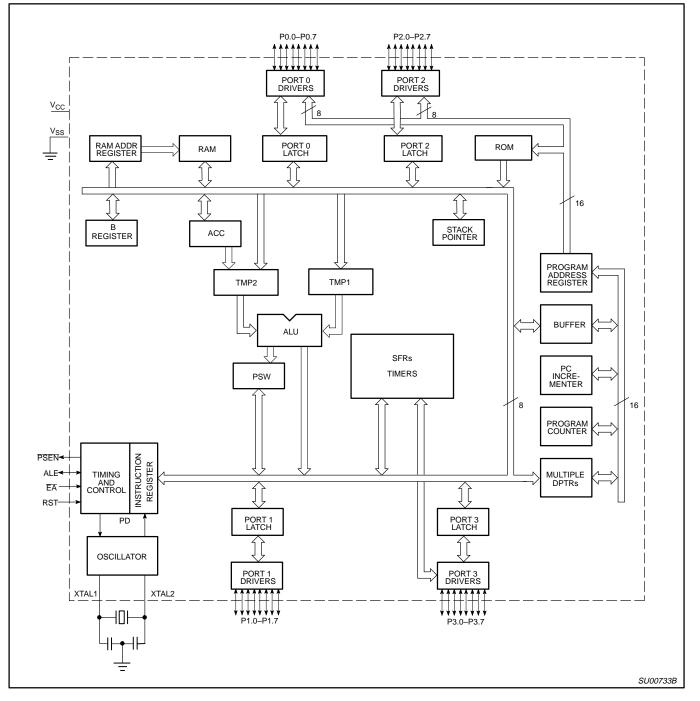
- 80C51 central processing unit
- Full static operation
- 8k × 8 ROM: 80C52; 16k × 8 ROM: 80C54;
 - $32k \times 8$ ROM: 80C58; all capable of addressing external memory to 64k bytes
 - Two level program security system
 - 64 byte encryption array
- 256 × 8 RAM, expandable externally to 64k bytes
- Speed range up to 33MHz
- Operating voltage 5V ±10%
- Three 16-bit timer/counters
 T2 is an up/down counter
- 12 13 dir up/down 000
- 6 interrupt sources
- 4 level priority
- Four 8-bit I/O ports
- Full-duplex enhanced UART
 - Framing error detection
- Automatic address recognition
- Power control modes
 - Idle mode
 - Power-down mode
- Once (On Circuit Emulation) Mode
- Five package styles
- Programmable clock out
- Low EMI (Inhibit ALE)
- Second DPTR register
- Asynchronous port reset

PIN CONFIGURATIONS



80C52/80C54/80C58

ORDERING INFORMATION


ROM 8k × 8	ROM 16k × 8	ROM 32k × 8	TEMPERATURE RANGE °C AND PACKAGE	FREQ MHz	DRAWING NUMBER
P80C52EBPN	P80C54EBPN	P80C58EBPN	0 to +70, Plastic Dual In-line Package	16	SOT129-1
P80C52EBAA	P80C54EBAA	P80C58EBAA	0 to +70, Plastic Leaded Chip Carrier	16	SOT187-2
P80C52EBBB	P80C54EBBB	P80C58EBBB	0 to +70, Plastic Quad Flat Pack	16	SOT307-2
P80C52EFPN	P80C54EFPN	P80C58EFPN	-40 to +85, Plastic Dual In-line Package	16	SOT129-1
P80C52EFA A	P80C54EFA A	P80C58EFA A	-40 to +85, Plastic Leaded Chip Carrier	16	SOT187-2
P80C52EFBB	P80C54EFBB	P80C58EFBB	-40 to +85, Plastic Quad Flat Pack	16	SOT307-2
P80C52IBP N	P80C54IBP N	P80C58IBP N	0 to +70, Plastic Dual In-line Package	24	SOT129-1
P80C52IBA A	P80C54IBA A	P80C58IBA A	0 to +70, Plastic Leaded Chip Carrier	24	SOT187-2
P80C52IBB B	P80C54IBB B	P80C58IBB B	0 to +70, Plastic Quad Flat Pack	24	SOT307-2
P80C52IFP N	P80C54IFP N	P80C58IFP N	-40 to +85, Plastic Dual In-line Package	24	SOT129-1
P80C52IFA A	P80C54IFA A	P80C58IFA A	-40 to +85, Plastic Leaded Chip Carrier	24	SOT187-2
P80C52IFB B	P80C54IFB B	P80C58IFB B	-40 to +85, Plastic Quad Flat Pack	24	SOT307-2
P80C52NBAA	P80C54NBAA	P80C58NBAA	0 to +70, Plastic Leaded Chip Carrier	33	SOT187-2
P80C52NBPN	P80C54NBPN	P80C58NBPN	0 to +70, Plastic Dual In-line Package	33	SOT129-1
P80C52NBBB	P80C54NBBB	P80C58NBBB	0 to +70, Plastic Quad Flat Pack	33	SOT307-2
P80C52NFAA	P80C54NFA A	P80C58NFAA	-40 to +85, Plastic Leaded Chip Carrier	33	SOT187-2
P80C52NFPN	P80C54NFPN	P80C58NFPN	-40 to +85, Plastic Dual In-line Package	33	SOT129-1
P80C52NFBB	P80C54NFBB	P80C58NFBB	-40 to +85, Plastic Quad Flat Pack	33	SOT307-2

LOGIC SYMBOL

80C52/80C54/80C58

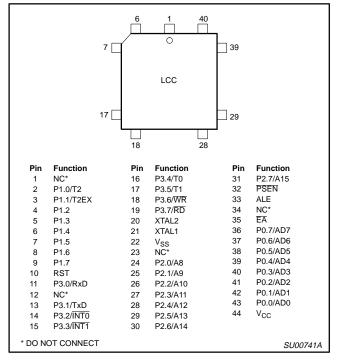
BLOCK DIAGRAM

80C52/80C54/80C58

Table 1. 80C52/80C54/80C58 Special Function Registers

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT A MSB		, SYMBO	L, OR AL	FERNATIV	E PORT	FUNCTIC	DN LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	-	_	_	-	-	-	_	AO	xxxxxx0B
AUXR1#	Auxiliary 1	A2H	_	-	-	_	-	-	-	DPS	xxxxxx0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
DPTR: DPH DPL	Data Pointer (2 bytes) Data Pointer High Data Pointer Low	83H 82H		-	-		-			-	00H 00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IE*	Interrupt Enable	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
			BF	BE	BD	BC	BB	BA	B9	B8	
IP*	Interrupt Priority	B8H	_	_	PT2	PS	PT1	PX1	PT0	PX0	x0000000
	interrupt i nenty	Don	B7	B6	B5	B4	B3	B2	B1	B0	
IPH#	Interrupt Priority High	B7H	57	00	PT2H	PSH	PT1H	PX1H	PTOH	PX0H	x0000000E
	Interrupt Phonity Fight	Б/П	87	- 86	85		83	82	81		X0000000
Dot						84		i		80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
	_		97	96	95	94	93	92	91	90	l
P1*	Port 1	90H	-	-	-	-	-	-	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	
P3*	Port 3	B0H	RD	WR	T1	Т0	INT1	INTO	TxD	RxD	FFH
PCON# ¹	Power Control	87H	SMOD1	SMOD0	_	POF ²	GF1	GF0	PD	IDL	00xx0000E
		0/11	D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	DOH	CY	AC	F0	RS1	RS0	OV		P	00H
RACAP2H#	Timer 2 Capture High	CBH		AC	FU	K31	K30	00	_	Г	00H
RACAP2H#	Timer 2 Capture Low	САН									00H 00H
SADDR#	Slave Address	A9H									00H
SADEN#	Slave Address Mask	B9H									00H
SBUF	Serial Data Buffer	99H									xxxxxxxB
020.			9F	9E	9D	9C	9B	9A	99	98	10000000
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SP	Stack Pointer	81H							1		07H
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
			CF	CE	CD	СС	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	С8Н	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	_	_	_	_	_	_	T2OE	DCEN	xxxxxx00E
TH0	Timer High 0	8CH							1201	DOEN	00H
TH1	Timer High 1	8DH									00H
TH2#	Timer High 2	CDH									00H
TL0	Timer Low 0	8AH									00H
TL1	Timer Low 1	8BH									00H
TL2#	Timer Low 2	ССН									00H
TMOD	Timer Mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	M0	00H

SFRs are bit addressable. *


SFRs are modified from or added to the 80C51 SFRs. #

Reserved bits. _

Reset value depends on reset source.
 Bit will not be affected by Reset. POF is not present in 80C52.

80C52/80C54/80C58

PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS

PLASTIC QUAD FLAT PACK PIN FUNCTIONS

		1 == (PQFP	34		
Pin	Function		Pin	Function		Pin	Function
1	P1.5		16	V _{SS}		31	P0.6/AD6
2	P1.6		17	NC*		32	P0.5/AD5
3	P1.7		18	P2.0/A8		33	P0.4/AD4
4	RST		19	P2.1/A9		34	P0.3/AD3
5	P3.0/RxD		20	P2.2/A10		35	P0.2/AD2
6	NC*		21	P2.3/A11		36	P0.1/AD1
7	P3.1/TxD		22	P2.4/A12		37	P0.0/AD0
8	P3.2/INT0		23	P2.5/A13		38	V _{CC}
9	P3.3/INT1		24	P2.6/A14		39	NC*
10	P3.4/T0		25	P2.7/A15		40	P1.0/T2
11	P3.5/T1		26	PSEN		41	P1.1/T2EX
12	P3.6/WR		27	ALE		42	P1.2
13	P3.7/RD		28	NC*		43	P1.3
14	XTAL2		29	EA		44	P1.4
15	XTAL1		30	P0.7/AD7			
* DO	NOT CONNE	СТ					SU00742A

PIN DESCRIPTIONS

	PIN NUMBER				
MNEMONIC	DIP	LCC	QFP	TYPE	NAME AND FUNCTION
V _{SS}	20	22	16	Ι	Ground: 0V reference.
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
P0.0–0.7	39–32	43–36	37–30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification. External pull-ups are required during program verification.
P1.0–P1.7	1–8	2–9	40–44, 1–3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 1 also receives the low-order address byte during program memory verification. Alternate functions include:
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control
	3	4	42	I	
	4	5	43	I/O	
	5	6	44	I/O	
	6	7	1	I/O	
	7	8	2	I/O	
	8	9	3	I/O	
P2.0–P2.7	21–28	24–31	18–25	I/O	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.

80C52/80C54/80C58

PIN NUMBER		ER			
MNEMONIC	DIP	LCC	QFP	TYPE	NAME AND FUNCTION
P3.0–P3.7	10–17	11, 13–19	5, 7–13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 3 also serves the special features of the 80C51 family, as listed below:
	10	11	5	- I	RxD (P3.0): Serial input port
	11	13	7	0	TxD (P3.1): Serial output port
	12	14	8	I.	INTO (P3.2): External interrupt
	13	15	9	I	INT1 (P3.3): External interrupt
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe
RST	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .
ALE	30	33	27	0	Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.
PSEN	29	32	26	0	Program Store Enable: The read strobe to external program memory. When the 80C52/80C54/80C58 is executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
EA	31	35	29	I	External Access Enable: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 7FFFH. If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 7FFFH. If security bit 1 is programmed, EA will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier.

NOTE:

To avoid "latch-up" effect at power-on, the voltage on any pin at any time must not be higher than V_{CC} + 0.5V or V_{SS} – 0.5V, respectively.

80C52/80C54/80C58

TIMER 2 OPERATION

Timer 2

Timer 2 is a 16-bit Timer/Counter which can operate as either an event timer or an event counter, as selected by C/T2* in the special function register T2CON (see Figure 1). Timer 2 has three operating modes:Capture, Auto-reload (up or down counting) ,and Baud Rate Generator, which are selected by bits in the T2CON as shown in Table 2.

Capture Mode

In the capture mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or counter (as selected by C/T2* in T2CON) which, upon overflowing sets bit TF2, the timer 2 overflow bit. This bit can be used to generate an interrupt (by enabling the Timer 2 interrupt bit in the IE register/SFR table). If EXEN2= 1, Timer 2 operates as described above, but with the added feature that a 1- to -0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2 like TF2 can generate an interrupt (which vectors to the same location as Timer 2 overflow interrupt. The Timer 2 interrupt service routine can interrogate TF2 and EXF2 to determine which event caused the interrupt). The capture mode is illustrated in Figure 2 (There is no reload value for TL2 and TH2 in this mode. Even when a capture event occurs from T2EX, the counter keeps on counting T2EX pin transitions or osc/12 pulses.).

Auto-Reload Mode (Up or Down Counter)

In the 16-bit auto-reload mode, Timer 2 can be configured (as either a timer or counter (C/T2* in T2CON)) then programmed to count up or down. The counting direction is determined by bit DCEN(Down Counter Enable) which is located in the T2MOD register (see

Figure 3). When reset is applied the DCEN=0 which means Timer 2 will default to counting up. If DCEN bit is set, Timer 2 can count up or down depending on the value of the T2EX pin.

Figure 4 shows Timer 2 which will count up automatically since DCEN=0. In this mode there are two options selected by bit EXEN2 in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFH and sets the TF2 (Overflow Flag) bit upon overflow. This causes the Timer 2 registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H.

The values in RCAP2L and RCAP2H are preset by software means. If EXEN2=1, then a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at input T2EX. This transition also sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be generated when either TF2 or EXF2 are 1.

In Figure 5 DCEN=1 which enables Timer 2 to count up or down. This mode allows pin T2EX to control the direction of count. When a logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will overflow at 0FFFFH and set the TF2 flag, which can then generate an interrupt, if the interrupt is enabled. This timer overflow also causes the 16-bit value in RCAP2L and RCAP2H to be reloaded into the timer registers TL2 and TH2.

When a logic 0 is applied at pin T2EX this causes Timer 2 to count down. The timer will underflow when TL2 and TH2 become equal to the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets the TF2 flag and causes 0FFFFH to be reloaded into the timer registers TL2 and TH2.

The external flag EXF2 toggles when Timer 2 underflows or overflows. This EXF2 bit can be used as a 17th bit of resolution if needed. The EXF2 flag does not generate an interrupt in this mode of operation.

	(M	SB)							(LSB)	
		TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	
Symbol	Position	n Nai	me and Sig	nificance						
TF2	T2CON.		ner 2 overflo en either RC			overflow and	d must be cl	eared by so	oftware. TF2	will not be set
EXF2	T2CON.	EX	EN2 = 1. Wł	ien Timer 2 e. EXF2 mu	interrupt is st be cleare	enabled, EX	(F2 = 1 will o	cause the C	0	ition on T2EX and to the Timer 2 t in up/down
RCLK	T2CON.		Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.							
TCLK	T2CON.		Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.							
EXEN2	T2CON.	trar	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.							
TR2	T2CON.	2 Sta	rt/stop contr	ol for Timer	2. A logic 1	starts the ti	mer.			
C/T2	T2CON.	1 Tim		iternal time	r (OSĆ/12)	alling edge	triggered).			
CP/RL2	T2CON.	clea EX	ared, auto-re	eloads will o nen either R	ccur either	with Timer 2	overflows c	or negative	transitions at	EXEN2 = 1. When T2EX when ced to auto-reload
										SL

Figure 1. Timer/Counter 2 (T2CON) Control Register

CMOS single-chip 8-bit microcontrollers

Table 2. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud rate generator
Х	Х	0	(off)

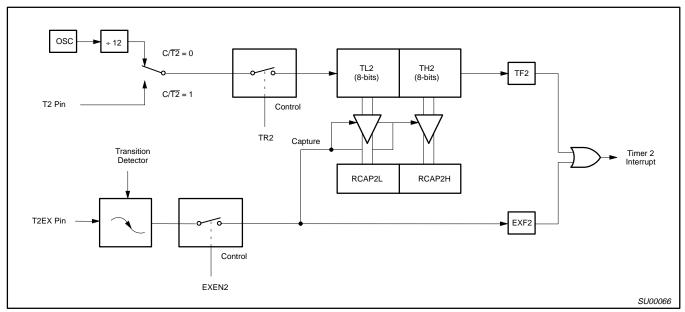


Figure 2. Timer 2 in Capture Mode

T2MOD	Addres	Address = 0C9H Reset Value = XX								lue = XXXX XX00B
	Not Bit A	Addressat	ble							
		_	_	_	_	_	_	T2OE	DCEN	
	Bit	7	6	5	4	3	2	1	0	
Symbol	Function	on								
_	Not implemented, reserved for future use.*									
T2OE	Timer 2	2 Output E	nable bit. S	ee details in	Programma	able Clock-C	Dut.			
DCEN	Down (Count Ena	able bit. Whe	en set, this a	llows Timer	2 to be cont	figured as a	n up/down d	counter.	
	se, the res									oke new features. a reserved bit is

Figure 3. Timer 2 Mode (T2MOD) Control Register

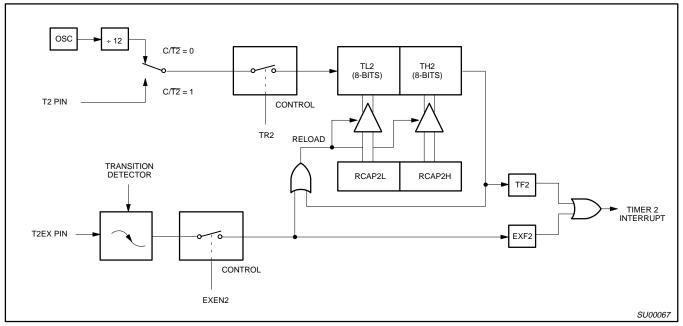


Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)

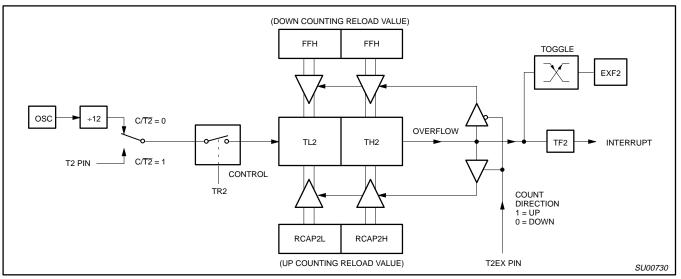


Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)

80C52/80C54/80C58

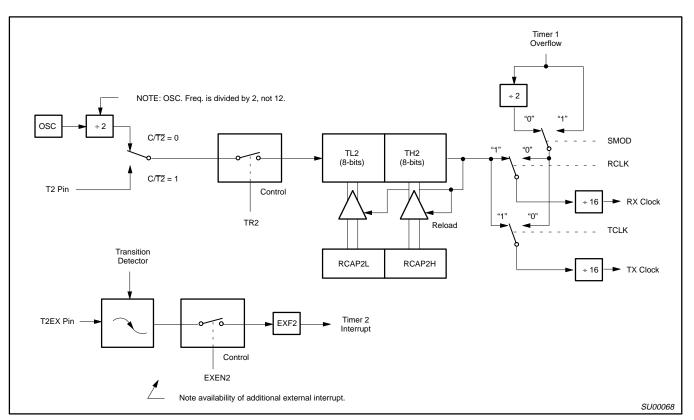


Figure 6. Timer 2 in Baud Rate Generator Mode

Table 3.	Timer 2 Generated Commonly Used
	Baud Rates

Baud Rate	Osc Freq	Timer 2				
Bauu Kale	OSC Freq	RCAP2H	RCAP2L			
375K	12MHz	FF	FF			
9.6K	12MHz	FF	D9			
2.8K	12MHz	FF	B2			
2.4K	12MHz	FF	64			
1.2K	12MHz	FE	C8			
300	12MHz	FB	1E			
110	12MHz	F2	AF			
300	6MHz	FD	8F			
110	6MHz	F9	57			

Baud Rate Generator Mode

Bits TCLK and/or RCLK in T2CON (Table 2) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0. Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates - one generated by Timer 1, the other by Timer 2.

Figure 6 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below:

Modes 1 and 3 Baud Rates =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The timer can be configured for either "timer" or "counter" operation. In many applications, it is configured for "timer" operation (C/T2*=0). Timer operation is different for Timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e., 1/12 the oscillator frequency). As a baud rate generator, it increments every state time (i.e., 1/2 the oscillator frequency). Thus the baud rate formula is as follows:

Modes 1 and 3 Baud Rates =

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 6, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

80C52/80C54/80C58

When Timer 2 is in the baud rate generator mode, one should not try to read or write TH2 and TL2. As a baud rate generator, Timer 2 is incremented every state time (osc/2) or asynchronously from pin T2; under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Table 3 shows commonly used baud rates and how they can be obtained from Timer 2.

Summary Of Baud Rate Equations

Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2(P1.0) the baud rate is:

Baud Rate = $\frac{\text{Timer 2 Overflow Rate}}{16}$

If Timer 2 is being clocked internally, the baud rate is:

Baud Rate = $\frac{f_{OSC}}{[32 \times [65536 - (RCAP2H, RCAP2L)]]}$

Where f_{OSC}= Oscillator Frequency

Table 4. Timer 2 as a Timer

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

RCAP2H, RCAP2L = 65536 -
$$\left(\frac{f_{OSC}}{32 \times Baud Rate}\right)$$

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. see Table 4 for set-up of Timer 2 as a timer. Also see Table 5 for set-up of Timer 2 as a counter.

POWER OFF FLAG³

The Power Off Flag (POF) is set by on-chip circuitry when the V_{CC} level on the 80C54/80C58 rises from 0 to 5V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or a warm start after powerdown. The V_{CC} level must remain above 3V for the POF to remain unaffected by the V_{CC} level.

	T20	ON
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)
16-bit Auto-Reload	00H	08H
16-bit Capture	01H	09H
Baud rate generator receive and transmit same baud rate	34H	36H
Receive only	24H	26H
Transmit only	14H	16H

Table 5. Timer 2 as a Counter

	ТМОД				
MODE	INTERNAL CONTROL (Note 1)	EXTERNAL CONTROL (Note 2)			
16-bit	02H	0AH			
Auto-Reload	03H	0BH			

NOTES:

1. Capture/reload occurs only on timer/counter overflow.

 Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode.

3. POF not present in 80C52.

80C52/80C54/80C58

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed.

Reset

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-on reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. At power-on, the voltage on V_{CC} and RST must come up at the same time for a proper start-up. Ports 1, 2, and 3 will asynchronously be driven to their reset condition when a voltage above V_{IH1} (min.) is applied to RESET.

Idle Mode

In the idle mode (see Table 6), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode

To save even more power, a Power Down mode (see Table 6) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power Down mode is terminated.

On the 80C52/54/58 either a hardware reset or external interrupt can be used to exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10ms).

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the

Table C. External Din Status During Idle and Davi

oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

Design Consideration

• When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal rest algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE™ Mode

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems using the 80C52/54/58 without removing the device from the circuit. The ONCE Mode is invoked by: 1. Pull ALE low while the device is in reset and PSEN is high;

2. Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the 80C52/54/58 is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Programmable Clock-Out

The 80C52/54/58 has a new feature. A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

- 1. to input the external clock for Timer/Counter 2, or
- 2. to output a 50% duty cycle clock ranging from 61Hz to 4MHz at a 16MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared and bit T2OE in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

$$\frac{\text{Oscillator Frequency}}{4 \times (65536 - \text{RCAP2H}, \text{RCAP2L})}$$

In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same.

Table 6. External	Pin Status During	Idle and Po	wer-Down w	loae

MODE	PROGRAM MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

80C52/80C54/80C58

Enhanced UART

The UART operates in all of the usual modes that are described in the first section of *Data Handbook IC20, 80C51-Based 8-Bit Microcontrollers.* In addition the UART can perform framing error detect by looking for missing stop bits, and automatic address recognition. The 80C52/54/58 UART also fully supports multiprocessor communication as does the standard 80C51 UART.

When used for framing error detect the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the SCON register. The FE bit shares the SCON.7 bit with SM0 and the function of SCON.7 is determined by PCON.6 (SMOD0) (see Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7 functions as SM0 when SMOD0 is cleared. When used as FE SCON.7 can only be cleared by software. Refer to Figure 8.

Automatic Address Recognition

Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the "Given" address or the "Broadcast" address. The 9 bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. Automatic address recognition is shown in Figure 9.

The 8 bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a Given or Broadcast address.

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to b used and which bits are "don't care". The SADEN mask can be logically ANDed with the SADDR to create the "|Given" address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme:

Slave 0	SADDR	=	1100 0000
	SADEN	=	<u>1111 1101</u>
	Given	=	1100 00X0

Slave 1	SADDR	=	1100 0000
	SADEN	=	<u>1111 1110</u>
	Given	=	1100 000X

In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for Slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

Slave 0	SADDR	=	1100 0000
	SADEN	=	<u>1111 1001</u>
	Given	=	1100 0XX0
Slave 1	SADDR	=	1110 0000
	SADEN	=	<u>1111 1010</u>
	Given	=	1110 0X0X
Slave 2	SADDR	=	1110 0000
	SADEN	=	<u>1111 1100</u>
	Given	=	1110 00XX

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary t make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are teated as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all "don't cares" as well as a Broadcast address of all "don't cares". this effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

80C52/80C54/80C58

	S	SCON Addr	ess = 98H							Reset Value = 0000 0000B
	Bit Ad	dressable							I	_
		SM0/FE	SM1	SM2	REN	TB8	RB8	ті	RI	
	Bit:	7	6	5	4	3	2	1	0	
		(SMOD0 = 0	/1)*							
Symbol	Fund	tion								
FE		ing Error bit								it is not cleared by valid e FE bit.
SM0	Seria	al Port Mode	Bit 0, (SMC	D0 must	= 0 to acce	ess bit SM0)				
SM1	Seria SM0	al Port Mode SM1	Bit 1 Mode	Descr	iption	Baud Rate	**			
	0	0	0	shift re	egister	f _{OSC} /12				
	0	1	1	8-bit L		variable				
	1 1	0 1	2 3	9-bit L 9-bit L		f _{OSC} /64 or variable	f _{OSC} /32			
SM2	recei In Mo	ved 9th data	1 bit (RB8) is 2 = 1 then R	s 1, indica I will not b	ting an add e activated	lress, and th d unless a va	e received	byte is a Gi	iven or Bro	ot be set unless the badcast Address. le received byte is a
REN	Enab	les serial re	ception. Set	t by softwa	are to enab	le reception.	Clear by s	oftware to o	disable red	ception.
TB8	The	9th data bit t	hat will be ti	ransmitted	l in Modes	2 and 3. Set	or clear by	software a	s desired	
RB8		odes 2 and 3 ode 0, RB8 is		ta bit that	was receiv	ed. In Mode	1, if SM2 =	= 0, RB8 is 1	the stop b	it that was received.
ті		smit interrup [.] modes, in a						lode 0, or a	at the begi	nning of the stop bit in the
RI		eive interrupt ther modes,								ough the stop bit time in
TE: 10D0 is locate	ed at PCON									SU00

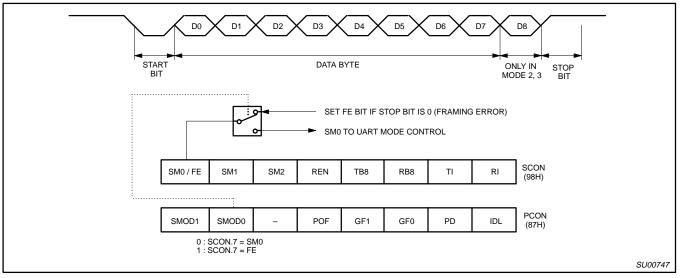


Figure 8. UART Framing Error Detection

15

80C52/80C54/80C58

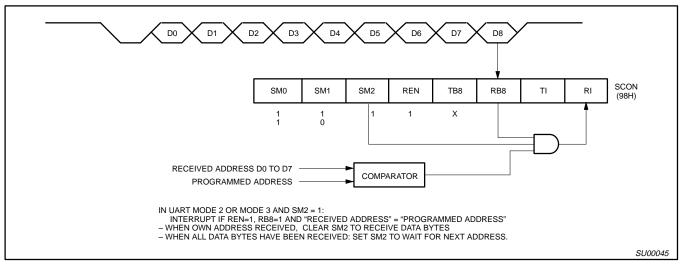


Figure 9. UART Multiprocessor Communication, Automatic Address Recognition

Interrupt Priority Structure

The 80C52/54/58 has a 6-source four-level interrupt structure. There are 3 SFRs associated with the interrupts on the 80C52/54/58. They are the IE and IP. (See Figures 10 and 11.) In addition, there is the IPH (Interrupt Priority High) register that makes the four-level interrupt structure possible. The IPH is located at SFR address B7H. The structure of the IPH register and a description of its bits is shown below:

IPH (Interrupt Priority High) (B7H)

7	6		5	4	3	2	1	0
-	-		PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPH.1 IPH.2 IPH.3 IPH.4	PT0H PX1H PT1H PSH	Tir Ex Tir Se Tir	mer 0 inte eternal inte mer 1 inte erial Port	errupt pri terrupt 1 errupt pri interrupt errupt pri	priority h ority high priority h ority high high ority high	igh 1		
IPH.7	—	No	ot implem	nented				

The function of the IPH SFR is simple and when combined with the IP SFR determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table:

PRIORI	TY BITS						
IPH.x	IP.x						
0	0	Level 0 (lowest priority)					
0	1	Level 1					
1	0	Level 2					
1	1	Level 3 (highest priority)					
-							

The priority scheme for servicing the interrupts is the same as that for the 80C51, except there are four interrupt levels on the 80C52/54/58 rather than two as on the 80C51. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

Table 7.Interrupt Table

SOURCE	POLLING PRIORITY	REQUEST BITS	HARDWARE CLEAR?	VECTOR ADDRESS
X0	1	IE0	N (L) ¹ Y (T) ²	03H
TO	2	TP0	Y	0BH
X1	3	IE1	N (L) Y (T)	13H
T1	4	TF1	Y	1BH
SP	5	R1, TI	N	23H
T2	6	TF2, EXF2	N	2BH
PCA	7	CF, CCFn n = 0–4	N	33H

NOTES:

1. L = Level activated

2. T = Transition activated

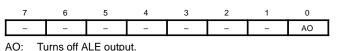
80C52/80C54/80C58

		7	6	5	4	3	2	1	0		
	IE0 (A8H)	EA		ET2	ES	ET1	EX1	ET0	EX0		
			Bit = 1 en Bit = 0 dis	ables the i ables it.	nterrupt.						
BIT	SYMBOL	FUNC	TION								
IE.7	EA		Global disable bit. If $EA = 0$, all interrupts are disabled. If $EA = 1$, each interrupt can be individually enabled or disabled by setting or clearing its enable bit.								
IE.6	_										
IE.5	ET2	Timer	2 interrup	t enable b	it.						
IE.4	ES	Serial	Port inter	rupt enabl	e bit.						
IE.3	ET1	Timer	1 interrup	t enable b	it.						
IE.2	EX1	Extern	al interru	ot 1 enable	e bit.						
IE.1	ET0	Timer	0 interrup	t enable b	it.						
IE.0	EX0	Extern	al interru	ot 0 enabl	e bit.						

Figure 10. IE Registers

		7	6	5	4	3	2	1	0
	IP0 (B8H)	—	_	PT2	PS	PT1	PX1	PT0	PX0
				signs high signs low					
BIT	SYMBOL	FUNC	TION						
IP.7	—	Not im	plemente	d, reserve	d for futur	e use.			
IP.6	—								
IP.5	PT2	Timer	ïmer 2 interrupt priority bit.						
IP.4	PS	Serial	erial Port interrupt priority bit.						
IP.3	PT1	Timer	1 interrup	t priority b	it.				
IP.2	PX1	Extern	al interrup	ot 1 priority	/ bit.				
IP.1	PT0	Timer	0 interrup	t priority b	it.				
IP.0	PX0	Extern	al interrup	ot 0 priority	/ bit.				

Figure 11. IP Registers


80C52/80C54/80C58

Reduced EMI Mode

The AO bit (AUXR.0) in the AUXR register when set disables the ALE output.

80C52/80C54/80C58 Reduced EMI Mode

AUXR (8EH)

Dual Data Pointer Register (DPTR)

The dual DPTR structure (see Figure 12) is a way by which the 80C52/54/58 will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

- Register Name: AUXR1#
- SFR Address: A2H
- Reset Value: xxxxxx0B

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	DPS

Where:

DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.

Select Reg	DPS
DPTR0	0
DPTR1	1

The DPS bit status whould be saved by software when switching between DPTR0 and DPTR1.

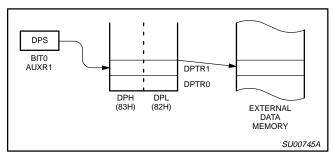


Figure 12. DPTR Structure

DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTR	Increments the data pointer by 1
MOV DPTR, #data16	Loads the DPTR with a 16-bit constant
MOV A, @ A+DPTR	Move code byte relative to DPTR to ACC
MOVX A, @ DPTR	Move external RAM (16-bit address) to ACC
MOVX @ DPTR , A	Move ACC to external RAM (16-bit address)
JMP @ A + DPTR	Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the Low or High byte in an instruction which accesses the SFRs. See application note AN458 for detailed operation

ABSOLUTE MAXIMUM RATINGS1, 2, 3

PARAMETER	RATING	UNIT
Operating temperature under bias	0 to +70 or -40 to +85	°C
Storage temperature range	-65 to +150	°C
Voltage on \overline{EA}/V_{PP} pin to V_{SS}	0 to +13.0	V
Voltage on any other pin to V_{SS}	-0.5 to +6.5	V
Maximum I _{OL} per I/O pin	15	mA
Power dissipation (based on package heat transfer limitations, not device power consumption)	1.5	W

NOTES:

 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied.

This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.

3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = 5.0V \pm 10\%$; $V_{SS} = 0V$

	DADAMETED	TEST					
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP ¹ MAX			
V _{IL}	Input low voltage	4.5V < V _{CC} < 5.5V	-0.5		0.2V _{CC} -0.1	V	
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2V _{CC} +0.9		V _{CC} +0.5	V	
V _{IH1}	Input high voltage, XTAL1, RST		0.7V _{CC}		V _{CC} +0.5	V	
V _{OL}	Output low voltage, ports 1, 2, 3 ⁸	V _{CC} = 4.5V I _{OL} = 1.6mA ²			0.4	V	
V _{OL1}	Output low voltage, port 0, ALE, PSEN ^{8, 7}	$V_{CC} = 4.5V$ $I_{OL} = 3.2mA^2$			0.4	V	
V _{OH}	Output high voltage, ports 1, 2, 3 ³	V _{CC} = 4.5V I _{OH} = -30μA	V _{CC} – 0.7			V	
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	V _{CC} = 4.5V I _{OH} = -3.2mA	V _{CC} – 0.7			V	
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4V	-1		-50	μΑ	
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0V See note 4			-650	μΑ	
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$			±10	μΑ	
I _{CC}	Power supply current (see Figure 20): Active mode @ 16MHz ⁵ Idle mode @ 16MHz ⁵ Power-down mode	See note 5 $T_{amb} = 0 \text{ to } +70^{\circ}\text{C}$ $T_{amb} = -40 \text{ to } +85^{\circ}\text{C}$		3	16 4 50 75	mA mA μA μA	
R _{RST}	Internal reset pull-down resistor		40		225	kΩ	
C _{IO}	Pin capacitance ¹⁰ (except EA)				15	pF	

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.

Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due 2. to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IoL can exceed these conditions provided that no single output sinks more than 5mA and no more than two outputs exceed the test conditions.

3. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the (V_{CC}-0.7) specification when the address bits are stabilizing.

Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when VIN is approximately 2V.

5.

6. This value applies to $T_{amb} = 0^{\circ}C$ to $+70^{\circ}C$. For $T_{amb} = -40^{\circ}C$ to $+85^{\circ}C$, $I_{TL} = -750\mu$ A. 7. Load capacitance for port 0, ALE, and $\overline{PSEN} = 100pF$, load capacitance for all other outputs = 80pF.

Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 15mA (*NOTE: This is 85°C specification.)

- 26mA
- Maximum IOI per 8-bit port: Maximum total IOL for all outputs: 71mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

ALE is tested to V_{OH1} , except when ALE is off then V_{OH} is the voltage specification. 9.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25pF. Pin capacitance of ceramic package is less than 15pF (except EA it is 25pF).

CMOS single-chip 8-bit microcontrollers

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ or } -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V^{1, 2, 3}$

			16MHz	CLOCK	VARIABL			
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	UNIT	
1/t _{CLCL}	13	Oscillator frequency Speed versions : E			3.5	16	MHz	
t _{LHLL}	13	ALE pulse width	85		2t _{CLCL} -40		ns	
t _{AVLL}	13	Address valid to ALE low	22		t _{CLCL} -40		ns	
t _{LLAX}	13	Address hold after ALE low	32		t _{CLCL} –30		ns	
t _{LLIV}	13	ALE low to valid instruction in		150		4t _{CLCL} -100	ns	
t _{LLPL}	13	ALE low to PSEN low	32		t _{CLCL} –30		ns	
t _{PLPH}	13	PSEN pulse width	142		3t _{CLCL} -45		ns	
t _{PLIV}	13	PSEN low to valid instruction in ⁴		82		3t _{CLCL} -105	ns	
t _{PXIX}	13	Input instruction hold after PSEN	0		0		ns	
t _{PXIZ}	13	Input instruction float after PSEN		37		t _{CLCL} -25	ns	
t _{AVIV}	13	Address to valid instruction in ⁴		207		5t _{CLCL} -105	ns	
t _{PLAZ}	13	PSEN low to address float		10		10	ns	
Data Memo	ory	•	•			•		
t _{RLRH}	14, 15	RD pulse width	275		6t _{CLCL} -100		ns	
t _{WLWH}	14, 15	WR pulse width	275		6t _{CLCL} -100		ns	
t _{RLDV}	14, 15	RD low to valid data in		147		5t _{CLCL} -165	ns	
t _{RHDX}	14, 15	Data hold after RD	0		0		ns	
t _{RHDZ}	14, 15	Data float after RD		65		2t _{CLCL} -60	ns	
t _{LLDV}	14, 15	ALE low to valid data in		350		8t _{CLCL} -150	ns	
t _{AVDV}	14, 15	Address to valid data in		397		9t _{CLCL} -165	ns	
t _{LLWL}	14, 15	ALE low to RD or WR low	137	239	3t _{CLCL} -50	3t _{CLCL} +50	ns	
t _{AVWL}	14, 15	Address valid to WR low or RD low	122		4t _{CLCL} -130		ns	
t _{QVWX}	14, 15	Data valid to WR transition	13		t _{CLCL} -50		ns	
t _{WHQX}	14, 15	Data hold after WR	13		t _{CLCL} -50		ns	
t _{QVWH}	15	Data valid to WR high	287		7t _{CLCL} -150		ns	
t _{RLAZ}	14, 15	RD low to address float		0		0	ns	
t _{WHLH}	14, 15	RD or WR high to ALE high	23	103	t _{CLCL} -40	t _{CLCL} +40	ns	
External C	lock						1	
t _{CHCX}	17	High time	20		20	t _{CLCL} -t _{CLCX}	ns	
t _{CLCX}	17	Low time	20		20	t _{CLCL} -t _{CHCX}	ns	
t _{CLCH}	17	Rise time		20		20	ns	
t _{CHCL}	17	Fall time		20		20	ns	
Shift Regis	ster	•					<u> </u>	
t _{XLXL}	16	Serial port clock cycle time	750		12t _{CLCL}		ns	
t _{QVXH}	16	Output data setup to clock rising edge	492		10t _{CLCL} -133		ns	
t _{XHQX}	16	Output data hold after clock rising edge	8		2t _{CLCL} -117		ns	
	16	Input data hold after clock rising edge	0		0		ns	
t _{XHDV}	16	Clock rising edge to input data valid		492		10t _{CLCL} -133	ns	

NOTES:

Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.

3. Interfacing the 80C52/54/58 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. See application note AN457 for external memory interfacing.

CMOS single-chip 8-bit microcontrollers

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C \text{ or } -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 5V \pm 10\%, V_{SS} = 0V^{1, 2, 3}$

			24MHz	CLOCK	VARIABL	33MHz	CLOCK		
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	דואט 🛙
1/t _{CLCL}	13	Oscillator frequency			3.5	33			
		Speed versions : I (24MHz) : N (33MHz)	3.5	24			3.5	33	MHz
t	13	ALE pulse width	43		2t _{CLCL} -40		21	00	ns
t _{LHLL}	13	Address valid to ALE low	17		t _{CLCL} -25		5		ns
t _{AVLL}	13	Address valid to ALE low	17						ns
t _{LLAX}	13	ALE low to valid instruction in	17	102	t _{CLCL} -25	4ta: a: 65		55	
t _{LLIV}	13	ALE low to Valid Instruction III	17	102	+ 2F	4t _{CLCL} –65	5	- 55	ns
	13	PSEN pulse width	80		t _{CLCL} -25		45		ns ns
t _{PLPH}	13	PSEN low to valid instruction in	00	65	3t _{CLCL} -45	24 60	43	30	
t _{PLIV}			0	00	0	3t _{CLCL} –60	0	30	ns
	13	Input instruction hold after PSEN	0	17	0	+ <u>25</u>	0	5	ns
t _{PXIZ}	13	Input instruction float after PSEN				t _{CLCL} -25		-	ns
t _{AVIV}	13	Address to valid instruction in		128		5t _{CLCL} -80		70	ns
	13	PSEN low to address float		10		10		10	ns
Data Mem			450	1	0. 100				
t _{RLRH}	14, 15	RD pulse width	150		6t _{CLCL} -100		82		ns
twlwh	14, 15	WR pulse width	150		6t _{CLCL} -100		82		ns
t _{RLDV}	14, 15	RD low to valid data in		118		5t _{CLCL} –90		60	ns
t _{RHDX}	14, 15	Data hold after RD	0		0		0		ns
t _{RHDZ}	14, 15	Data float after RD		55		2t _{CLCL} -28		32	ns
t _{LLDV}	14, 15	ALE low to valid data in		183		8t _{CLCL} –150		90	ns
t _{AVDV}	14, 15	Address to valid data in		210		9t _{CLCL} -165		105	ns
t _{LLWL}	14, 15	ALE low to RD or WR low	75	175	3t _{CLCL} –50	3t _{CLCL} +50	40	140	ns
t _{AVWL}	14, 15	Address valid to WR low or RD low	92		4t _{CLCL} -75		45		ns
t _{QVWX}	14, 15	Data valid to WR transition	12		t _{CLCL} -30		0		ns
t _{WHQX}	14, 15	Data hold after WR	17		t _{CLCL} -25		5		ns
t _{QVWH}	15	Data valid to WR high	162		7t _{CLCL} -130		80		ns
t _{RLAZ}	14, 15	RD low to address float		0		0		0	ns
t _{WHLH}	14, 15	RD or WR high to ALE high	17	67	t _{CLCL} -25	t _{CLCL} +25	5	55	ns
External C	lock			_					
t _{CHCX}	17	High time	17		17	t _{CLCL} -t _{CLCX}			ns
t _{CLCX}	17	Low time	17		17	t _{CLCL} -t _{CHCX}			ns
t _{CLCH}	17	Rise time		5		5			ns
t _{CHCL}	17	Fall time		5		5			ns
Shift Regi	ster								
t _{XLXL}	16	Serial port clock cycle time	505		12t _{CLCL}		360		ns
t _{QVXH}	16	Output data setup to clock rising edge	283		10t _{CLCL} -133		167		ns
t _{XHQX}	16	Output data hold after clock rising edge	3		2t _{CLCL} -80				ns
t _{XHDX}	16	Input data hold after clock rising edge	0		0		0		ns
t _{XHDV}	16	Clock rising edge to input data valid		283		10t _{CLCL} -133		167	ns

NOTES:

 Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.
 Interfacing the 80C52/54/58 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. Variable clock is specified for oscillator frequencies greater than 16MHz to 33MHz. For frequencies equal or less than 16MHz, see 16MHz "AC Electrial Characteristics", page 20.

CMOS single-chip 8-bit microcontrollers

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- $\mathsf{C}-\,\mathsf{Clock}$
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE

- P PSEN
- Q Output data
- R RD signal
- t Time
- V Valid
- $\mathsf{W}-\ \overline{\mathsf{W}\mathsf{R}}\ \text{signal}$
- X No longer a valid logic level
- Z Float

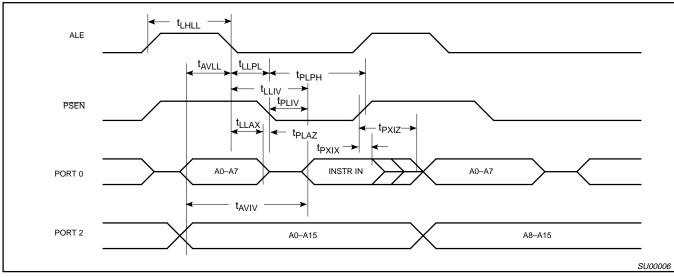


Figure 13. External Program Memory Read Cycle

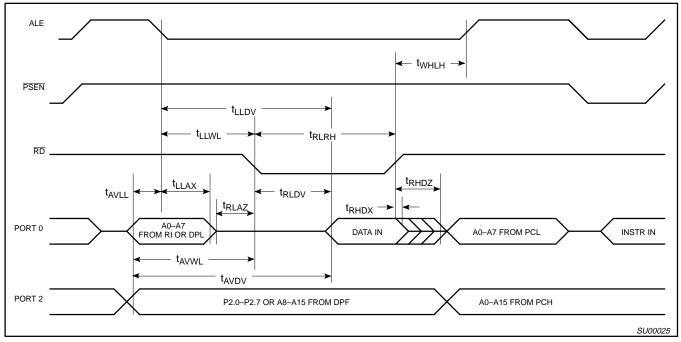


Figure 14. External Data Memory Read Cycle

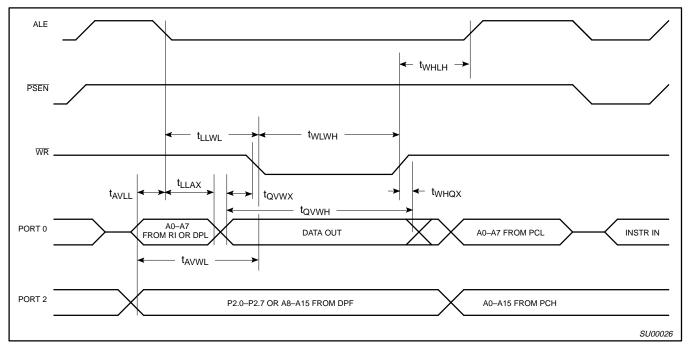


Figure 15. External Data Memory Write Cycle

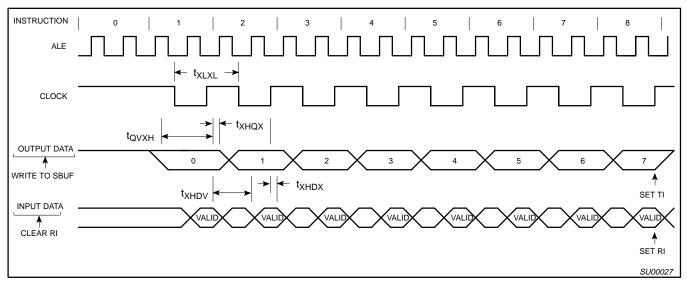


Figure 16. Shift Register Mode Timing

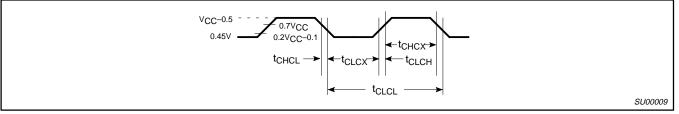
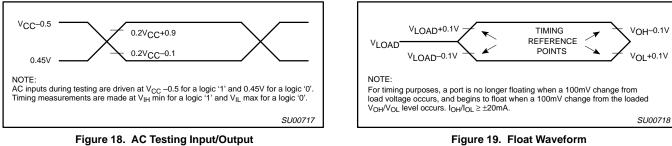



Figure 17. External Clock Drive

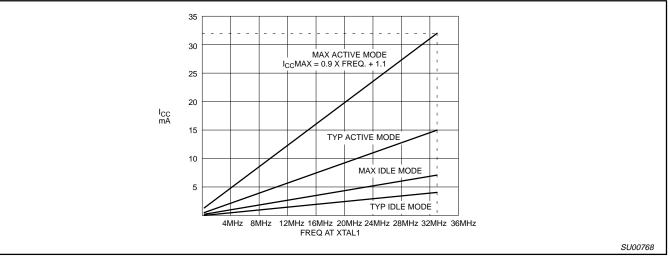
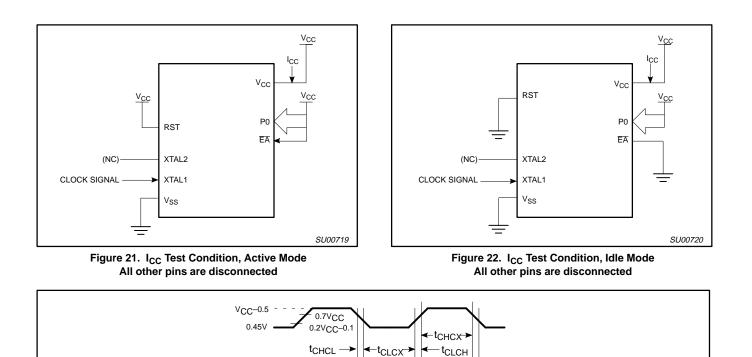
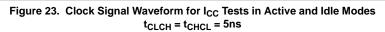
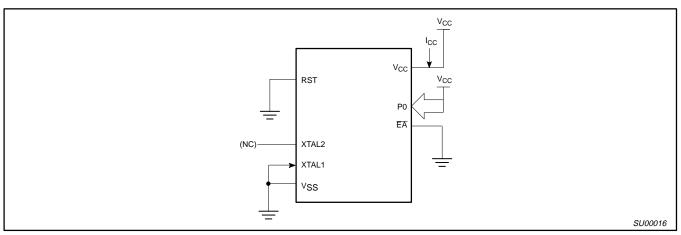
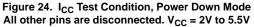




Figure 20. I_{CC} vs. FREQ Valid only within frequency specifications of the device under test


80C52/80C54/80C58



SU00009

^tCLCL

80C52/80C54/80C58

Security Bits

With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 8) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, \overline{EA} is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled.

Encryption Array

64 bytes of encryption array are initially unprogrammed (all 1s).

PROGRAM LOCK BITS ^{1, 2}		BITS ^{1, 2}	
SB1 SB2		SB2	PROTECTION DESCRIPTION
1	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.

NOTES:

1. P – programmed. U – unprogrammed.

Table 8. Program Security Bits

2. Any other combination of the security bits is not defined.

80C52 ROM CODE SUBMISSION

When submitting ROM code for the 80C52, the following must be specified:

1. 8k byte user ROM data

- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 1FFFH	DATA	7:0	User ROM Data
2000H to 201FH KEY		7:0	ROM Encryption Key FFH = no encryption
2020H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
2020H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. EA is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	□ Disabled
Security Bit #2:	□ Enabled	□ Disabled
Encryption:	🗆 No	Yes If Yes, must send key file.

80C52/80C54/80C58

80C54 ROM CODE SUBMISSION

When submitting ROM code for the 80C54, the following must be specified:

- 1. 16k byte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 3FFFH	DATA	7:0	User ROM Data
4000H to 401FH KEY		7:0	ROM Encryption Key FFH = no encryption
4020H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
4020H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. EA is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	Disable	ed
Security Bit #2:	Enabled	Disable	ed
Encryption:	🗆 No	□ Yes	If Yes, must send key file.

80C52/80C54/80C58

80C58 ROM CODE SUBMISSION

When submitting ROM code for the 80C58, the following must be specified:

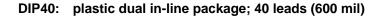
- 1. 32k byte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

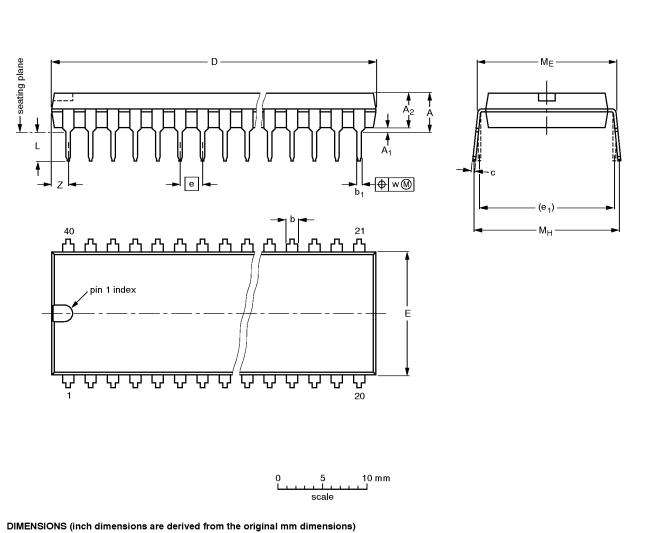
If submitting a file, the format is as follows:

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 7FFFH	DATA	7:0	User ROM Data
8000H to 801FH	KEY	7:0	ROM Encryption Key FFH = no encryption
8020H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
8020H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and


2. EA is latched on Reset.


Security Bit 2: When programmed, this bit inhibits Verify User ROM.

If the ROM code file does not include the options, the following information must be included with the ROM code.

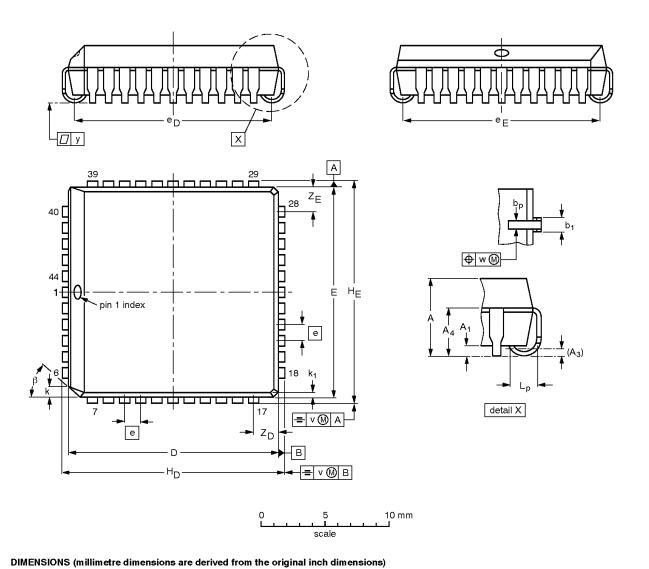
For each of the following check the appropriate box and send to Philips along with the code:

Security Bit #1:	Enabled	□ Disabled
Security Bit #2:	Enabled	Disabled
Encryption:	🗆 No	□ Yes If Yes, must send key file.

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	о ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	MH	w	Z ⁽¹⁾ max.
mm	4.7	0.51	4.0	1.70 1.14	0.53 0.38	0.36 0.23	52.50 51.50	14.1 13.7	2.54	15.24	3.60 3.05	15.80 15.24	17.42 15.90	0.254	2.25
inches	0.19	0.020	0.16	0.067 0.045	0.021 0.015	0.014 0.009	2.067 2.028	0.56 0.54	0.10	0.60	0.14 0.12	0.62 0.60	0.69 0.63	0.01	0.089

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	I	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT129-1	051G08	MO-015AJ			-92-11-17 95-01-14

29

Product specification

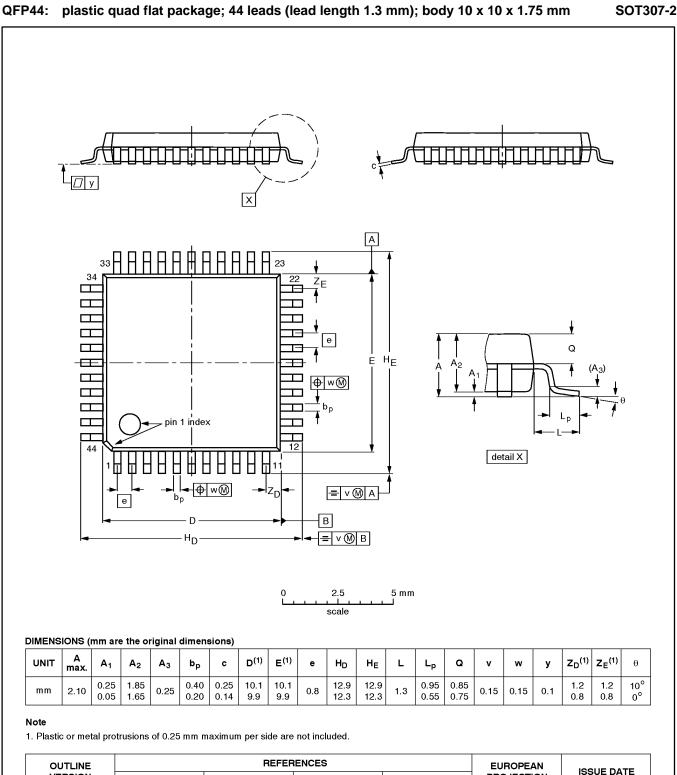
SOT129-1

PLCC44: plastic leaded chip carrier; 44 leads

UNIT	А	A ₁ min.	Α3	A ₄ max.	bp	b ₁	D ⁽¹⁾	E ⁽¹⁾	е	е _D	еЕ	HD	HE	k	k ₁ max.	Lp	v	w	у	Z _D ⁽¹⁾ max.	Z _E ⁽¹⁾ max.	β
mm	4.57 4.19	0.51	0.25	3.05	0.53 0.33	0.81 0.66		16.66 16.51		16.00 14.99	16.00 14.99				0.51	1.44 1.02	0.18	0.18	0.10	2.16	2.16	45°
inches	0.180 0.165	0.020	0.01	0.12	0.021 0.013	0.032 0.026	0.656 0.650	0.656 0.650	0.05	0.630 0.590	0.630 0.590	0.695 0.685	0.695 0.685	0.048 0.042	0.020	0.057 0.040	0.007	0.007	0.004	0.085	0.085	

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.


OUTLINE		REFEF	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT187-2	112E10	MO-047AC				-92-11-17- 95-02-25	

SOT187-2

80C52/80C54/80C58

92-11-17

95-02-04

REFERENCES EUROPEAN OUTLINE VERSION PROJECTION IEC JEDEC EIAJ] ()

SOT307-2

80C52/80C54/80C58

DEFINITIONS							
Data Sheet Identification	Product Status	Definition					
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.					
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.					
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.					

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1996 All rights reserved. Printed in U.S.A.