

SLLS552B - DECEMBER 2002 - REVISED JUNE 2003

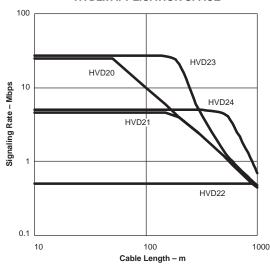
EXTENDED COMMON-MODE RS-485 TRANSCEIVERS

FEATURES

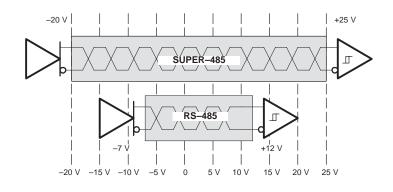
- Common-Mode Voltage Range (-20 V to 25 V)
 More Than Doubles TIA/EIA-485 Requirement
- Reduced Unit-Load for up to 256 Nodes
- Bus I/O Protection to Over 16-kV HBM
- Failsafe Receiver for Open-Circuit, Short-Circuit and Idle-Bus Conditions
- Low Standby Supply Current 1-μA Max
- More Than 100 mV Receiver Hysteresis

APPLICATIONS

- Long Cable Solutions
 - Factory Automation
 - Security Networks
 - Building HVAC
- Severe Electrical Environments
 - Electrical Power Inverters
 - Industrial Drives
 - Avionics


DESCRIPTION

The transceivers in the HVD2x family offer performance far exceeding typical RS-485 devices. In addition to meeting all requirements of the TIA/EIA-485-A standard, the HVD2x family operates over an extended range of common-mode voltage, and has features such as high ESD protection, wide receiver hysteresis, and failsafe operation. This family of devices is ideally suited for long-cable networks, and other applications where the environment is too harsh for ordinary transceivers.


These devices are designed for bidirectional data transmission on multipoint twisted-pair cables. Example applications are digital motor controllers, remote sensors and terminals, industrial process control, security stations, and environmental control systems.

These devices combine a 3-state differential driver and a differential receiver, which operate from a single 5-V power supply. The driver differential outputs and the receiver differential inputs are connected internally to form a differential bus port that offers minimum loading to the bus. This port features an extended common-mode voltage range making the device suitable for multipoint applications over long cable runs.

HVD2x APPLICATION SPACE

HVD2x Devices Operate Over a Wider Common-Mode Voltage Range

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (continued)

The 'HVD20 provides high signaling rate (up to 25 Mbps) for interconnecting networks of up to 64 nodes.

The 'HVD21 allows up to 256 connected nodes at moderate data rates (up to 5 Mbps). The driver output slew rate is controlled to provide reliable switching with shaped transitions which reduce high-frequency noise emissions.

The 'HVD22 has controlled driver output slew rate for low radiated noise in emission-sensitive applications and for improved signal quality with long stubs. Up to 256 'HVD22 nodes can be connected at signaling rates up to 500 kbps.

The 'HVD23 implements receiver equalization technology for improved jitter performance on differential bus applications with data rates up to 25 Mbps at cable lengths up to 160 meters.

The 'HVD24 implements receiver equalization technology for improved jitter performance on differential bus applications with data rates in the range of 1 Mbps to 10 Mbps at cable lengths up to 1000 meters.

The receivers also include a failsafe circuit that provides a high-level output within 250 microseconds after loss of the input signal. The most common causes of signal loss are disconnected cables, shorted lines, or the absence of any active transmitters on the bus. This feature prevents noise from being received as valid data under these fault conditions. This feature may also be used for Wired-Or bus signaling.

The SN65HVD2X devices are characterized for operation over the temperature range of -40°C to 85°C.

PRODUCT SELECTION GUIDE

PART NUMBERS	CABLE LENGTH AND SIGNALING RATE(1)	NODES	MARKING
SN65HVD20	Up to 50 m at 25 Mbps	Up to 64	D: VP20 P: 65HVD20
SN65HVD21	Up to 150 m at 5 Mbps (with slew rate limit)	Up to 256	D: VP21 P: 65HVD21
SN65HVD22	Up to1200 m at 500 kbps (with slew rate limit)	Up to 256	D: VP22 P: 65HVD22
SN65HVD23	Up to 160 m at 25 Mbps (with receiver equalization)	Up to 64	D: VP23 P: 65HVD23
SN65HVD24	Up to 500 m at 3 Mbps (with receiver equalization)	Up to 256	D: VP24 P: 65HVD24

⁽¹⁾ Distance and signaling rate predictions based upon Belden 3105A cable and 15% eye pattern jitter.

AVAILABLE OPTIONS

PLASTIC THROUGH-HOLE P-PACKAGE (JEDEC MS-001)	PLASTIC SMALL-OUTLINE(1) D-PACKAGE (JEDEC MS-012)
SN65HVD20P	SN65HVD20D
SN65HVD21P	SN65HVD21D
SN65HVD22P	SN65HVD22D
SN65HVD23P	SN65HVD23D
SN65HVD24P	SN65HVD24D

⁽¹⁾ Add R suffix for taped and reeled carriers.

SLLS552B - DECEMBER 2002 - REVISED JUNE 2003

DRIVER FUNCTION TABLE

Н	HVD20, HVD21, HVD22				HVD23, HVD24				
INPUT	ENABLE	OUTPUTS		OUTPUTS		INPUT	ENABLE	OUTF	PUTS
D	DE	Α	В	D	DE	Α	В		
Н	Н	Н	L	Н	Н	Н	L		
L	Н	L	Н	L	Н	L	Н		
X	L	Z	Z	X	L	Z	Z		
X	OPEN	Z	Z	X	OPEN	Z	Z		
OPEN	Н	Н	L	OPEN	Н	L	Н		

H = high level, L = low level, X = don't care, Z = high impedance (off), ? = indeterminate

RECEIVER FUNCTION TABLE

DIFFERENTIAL INPUT	ENABLE	OUTPUT
$V_{ID} = (V_A - V_B)$	RE	R
0.2 V ≤ V _{ID}	L	Н
$-0.2 \text{ V} < \text{V}_{1D} < 0.2 \text{ V}$	L	See Note A
$V_{ID} \le -0.2 V$	L	L
X	Н	Z
X	OPEN	Z
Open circuit	L	Н
Short Circuit	L	Н
Idle (terminated) bus	L	Н

H = high level, L = low level, X = don't care, Z = high impedance (off), ? = indeterminate

NOTE A: If the differential input V_{ID} remains within the indeterminate-logic range for more than 250 μs , the integrated failsafe circuitry detects a bus fault, and set the receiver output to a high state. See Figure 15.

SLLS552B - DECEMBER 2002 - REVISED JUNE 2003

POWER DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR(3) ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
-	Low-K(1)	710 mW	5.68 mW/°C	455 mW	370 mW
D	High-K ⁽²⁾	1282 mW	10.3 mW/°C	821 mW	667 mW
	Low-K(1)	984 mW	7.87 mW/°C	630 mW	512 mW
P	High-K ⁽²⁾	1478 mW	11.8 mW/°C	946 mW	768 mW

⁽¹⁾ In accordance with the Low-K thermal metric definitions of EIA/JESD51-3.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

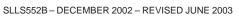
			SN65HVD2X
Supply voltage(2), V _{CC}			–0.5 V to 7 V
Voltage at any bus I/O terminal			–27 V to 27 V
Voltage input, transient puls	Voltage input, transient pulse, A and B, (through 100 Ω , see Figure 16)		
Voltage input at any D, DE	or RE terminal		-0.5 V to V _{CC} + 0.5 V
	Human Body Model ⁽³⁾	A, B, GND	16 kV
		All pins	5 kV
Electrostatic discharge	Charged-DeviceModel(4)	All pins	1.5 kV
	Machine Model (5)	All pins	200 V
Continuous total power diss	sipation		See Power Dissipation Rating Table
Junction temperature, T _J		150°C	
Storage temperature, T _{Stg}	Storage temperature, T _{Stg}		

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	V
Voltage at any bus I/O terminal	A, B	-20		25	V
High-level input voltage, VIH	D DE DE	2		VCC	.,
Low-level input voltage, V _{IL}	D, DE, RE	0		0.8	V
Differential input voltage, V _{ID}	A with respect to B	-25		25	V
Outract comment	Driver	-110		110	^
Output current	Receiver	-8		8	mA
Operating free-air temperature, Ta		-40		85	°C
Junction temperature, T _J		-40		125	°C

⁽²⁾ In accordance with the High-K thermal metric definitions of EIA/JESD51-7.


⁽³⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-A.

⁽⁴⁾ Tested in accordance with JEDEC Standard 22, Test Method C101.

⁽⁵⁾ Tested in accordance with JEDEC Standard 22, Test Method A115-A.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted) (1)

PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA		0.75		V
VO	Open-circuit output voltage	A or B, No load	0		VCC	V
		No load (open circuit)	3.3	4.2	VCC	
VOD(SS)	Steady-state differential output voltage magnitude	R_L = 54 Ω, See Figure 1	1.8	2.5		V
, ,	magnitude	With common-mode loading, See Figure 2	1.8			
Δ V _{OD} (SS)	Change in steady-state differential output voltage between logic states	See Figure 1 and Figure 3			0.1	V
VOC(SS)	Steady-state common-mode output voltage	See Figure 1	2.1	2.5	2.9	V
ΔV _{OC} (SS)	Change in steady-state common-mode output voltage, VOC(H) – VOC(L)	See Figure 1 and Figure 4			0.1	V
VOC(PP)	Peak-to-peak common-mode output voltage, VOC(MAX) - VOC(MIN)	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 1 and Figure 4		0.35		V
VOD(RING)	Differential output voltage over and under shoot	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 5			10%	
Ц	Input current	D, DE	-100		100	μΑ
l _{O(OFF)}	Output current with power off	V _{CC} < = 2.5 V		ceiver line	input	
loz	High impedance state output current	DE at 0 V		current		
los	Short-circuit output current	$V_O = -20 \text{ V}$ to 25 V, See Figure 9	-250		250	mA
C _{OD}	Differential output capacitance		Se	e receiver	Cl	

⁽¹⁾ All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C .

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

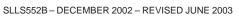
	PARAMETER	TEST C	ONDITIONS	MIN	TYP(1)	MAX	UNIT
^t PLH	Differential output propagation delay, low-to- high	$R_1 = 54 \Omega$	HVD20, HVD23	6	10	20	
1	3	$C_{L}^{-} = 50 \text{ pF},$	HVD21, HVD24	20	32	60	ns
^t PHL	Differential output propagation delay, high-to-low	See Figure 3	HVD22	160	280	500	
t _r	Differential output rise time	$R_{I} = 54 \Omega$	HVD20, HVD23	2	6	12	
1		$C_{L} = 50 \text{ pF},$	HVD21, HVD24	20	40	60	ns
tf	Differential output fall time	See Figure 3	HVD22	200	400	600	
^t PZH	Propagation delay time, high-impedance-to-high-level output	==	HVD20, HVD23			40	
17211	repagation usua, ting, ingrained to riig. Here suspen	RE at 0 V, See Figure 6	HVD21, HVD24			100	ns
^t PHZ	Propagation delay time, high-level-output-to-high-impedance	See rigure o	HVD22			300	
tPZL	Propagation delay time, high-impedance-to-low-level output	==	HVD20, HVD23			40	
1 22		RE at 0 V, See Figure 7	HVD21, HVD24			100	ns
^t PLZ	Propagation delay time, low-level-output-to-high-impedance	See rigule r	HVD22			300	
td(standby)	Time from an active differential output to standby	DE at Van S	oo Figuro 0			2	μs
td(wake)	Wake-up time from standby to an active differential output	RE at V _{CC} , S	ee rigure o			8	μs
		HVD20, HVD23				2	•
^t sk(p)	Pulse skew tpLH - tpHL	HVD21, HVD24				6	ns
		HVD22			50		

⁽¹⁾ All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C .

SLLS552B - DECEMBER 2002 - REVISED JUNE 2003

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions


	PARAMETER	TEST	MIN	TYP(1)	MAX	UNIT	
V _{IT(+)}	Positive-going differential input voltage threshold	Coo Figure 10	$V_O = 2.4 \text{ V}, I_O = -8 \text{ mA}$		60	200	mV
VIT(-)	Negative-going differential input voltage threshold	See Figure 10	$V_O = 0.4 \text{ V}, I_O = 8 \text{ mA}$	-200	-60		IIIV
VHYS	Hysteresis voltage (V _{IT+} - V _{IT-})			100	130		mV
V	Positive-going differential input failsafe voltage	See Figure 15	$V_{CM} = -7 \text{ V to } 12 \text{ V}$	40	120	200	mV
V _{IT(F+)}	threshold	See Figure 15	$V_{CM} = -20 \text{ V to } 25 \text{ V}$		120	250	IIIV
\/ \	Negative-going differential input failsafe voltage	See Figure 15	$V_{CM} = -7 \text{ V to } 12 \text{ V}$	-200	-120	-40	mV
VIT(F-)	threshold	See Figure 15	$V_{CM} = -20 \text{ V to } 25 \text{ V}$	-250	-120		IIIV
VIK	Input clamp voltage	$I_{I} = -18 \text{ mA}$	I _I = -18 mA				V
Vон	High-level output voltage	V _{ID} = 200 mV, I _{OH}	= -8 mA, See Figure 11	4			V
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV}, I_{O}$	L = 8 mA, See Figure 11			0.4	V
		$V_1 = -7 \text{ to } 12 \text{ V},$	HVD20, HVD23	-400		500	
lum. um	Due input current (neuron en en neuron eff)	Other input = 0 V	HVD21, HVD22, HVD24	-100		125	^
I(BUS)	Bus input current (power on or power off)	$V_1 = -20 \text{ to } 25 \text{ V},$	HVD20, HVD23	-800		1000	μΑ
		Other input = 0 V	HVD21, HVD22, HVD24	-200		250	
lį	Input current	RE		-100		100	μΑ
р.	Input registance	HVD20, 23		24			kΩ
R _l	Input resistance	HVD21, 22, 24		96			K12
C _{ID}	Differential input capacitance	$V_{ID} = 0.5 + 0.4 \sin\theta$	e (2π x 1.5 x 10 ⁶ t)			20	pF

⁽¹⁾ All typical values are at 25°C.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions

	PARAMETER	TEST	TEST CONDITIONS			MAX	UNIT
^t PLH	Propagation delay time, low-to-high level output	Can Firme 44	HVD20, HVD23		16	35	
tPHL	Propagation delay time, high-to-low level output	See Figure 11	HVD21, HVD22, HVD24		25	50	ns
t _r	Receiver output rise time	Coo Figure 44			2	4	
t _f	Receiver output fall time	See Figure 11			2	4	ns
^t PZH	Receiver output enable time to high level	See Figure 12	Con Figure 40			120	ns
^t PHZ	Receiver output disable time from high level	See Figure 12		16	35	115	
tPZL	Receiver output enable time to low level	See Figure 13		90	120	20	
tPLZ	Receiver output disable time from low level	See Figure 13			16	35	ns
^t r(standby)	Time from an active receiver output to standby					2	
tr(wake)	Wake-up time from standby to an active receiver output	See Figure 14,	See Figure 14, DE at 0 V			8	μs
tsk(p)	Pulse skew tpLH - tpHL					5	ns
tp(set)	Delay time, bus fail to failsafe set	See Figure 15, pulse rate = 1 kHz			250	350	μs
tp(reset)	Delay time, bus recovery to failsafe reset	See Figure 15,			50	ns	

RECEIVER EQUALIZATION CHARACTERISTICS(1)

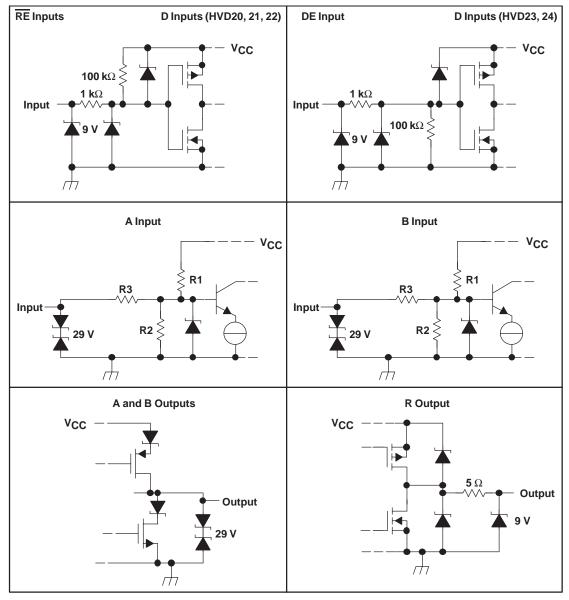
over recommended operating conditions

PARAMETER		TEST C	ONDITION	S		MIN TYP(2)	MAX	UNIT					
				0 m	HVD23	2							
				100 m(3)	HVD20	6							
				100 111(0)	HVD23	3							
			25 Mbps	150 m	HVD20	15							
				130 111	HVD23	4							
				200 m	HVD20	27							
				200 111	HVD23	8							
				200 m	HVD20	22							
		Pseudo-random NRZ code with a bit pattern length of $2^{16} - 1$, See Figure 26	200	200 111	HVD23	8							
	Dools to mosts		10 Mbps	Mbps 250 m	HVD20	34							
tj(pp)	Peak-to-peak eye-patttern jitter				10 IVIDPS	10 Mbps	10 IVIDPS	10 Mibps	230 III	HVD23	15		ns
	Cyc pattern jitter				300 m	HVD20	49]				
				300 111	HVD23	27							
			5 M	500 m	HVD21	128							
			5 Mbps	500 111	HVD24	18							
					HVD20	93							
			2 Mbna	500 m	HVD21	103							
			3 Mbps	500 m	HVD23	90							
					HVD24	16							
			1 Mbna	1000	HVD21	216							
			1 Mbps	1000 m	HVD24	62							

⁽¹⁾ The HVD20 and HVD21 do not have receiver equalization, but are specified for comparison.

SUPPLY CURRENT

over recommended operating conditions (unless otherwise noted)


PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Icc		Driver enabled (DE at V _{CC}), Receiver enabled (RE at 0 V) No load, V _I = 0 V or V _{CC}	HVD20		6	9	mA
	Supply current		HVD21		8	12	
			HVD22		6	9	
			HVD23		7	11	
			HVD24		10	14	
		Driver enabled (DE at V _{CC}), Receiver disabled (RE at V _{CC}) No load, V _I = 0 V or V _{CC}	HVD20		5	8	mA
			HVD21		7	11	
			HVD22		5	8	
			HVD23		5	9	
			HVD24		8	12	
			HVD20		4	7	
			HVD21		5	8	
			4	7	mA		
			HVD23		4.5	9	
			HVD24		5.5	10	
		Driver disabled (DE at 0 V) Receiver disabled (RE at V _{CC}) D open	All HVD2x			1	μΑ

⁽²⁾ All typical values are at $V_{CC} = 5 \text{ V}$, and temperature = 25°C .

⁽³⁾ Cable is Belden 3105A or equivalent.

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

	R1/R2	R3
HVD20, 23	9 k Ω	45 k Ω
HVD21, 22, 24	36 k Ω	180 k Ω

PARAMETER MEASUREMENT INFORMATION

NOTE:

Test load capacitance includes probe and jig capacitance (unless otherwise specified). Signal generator characteristics: rise and fall time < 6 ns, pulse rate 100 kHz, 50% duty cycle, $Z_0 = 50 \Omega$ (unless otherwise specified)

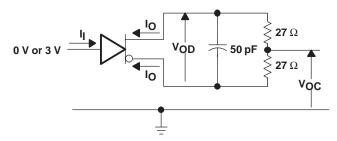


Figure 1. Driver Test Circuit, V_{OD} and V_{OC} Without Common-Mode Loading

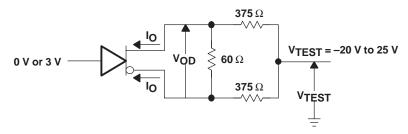


Figure 2. Driver Test Circuit, VOD With Common-Mode Loading

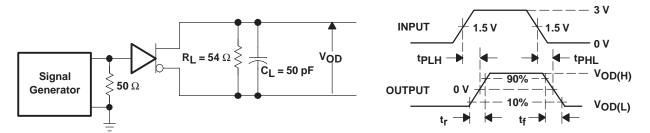


Figure 3. Driver Switching Test Circuit and Waveforms

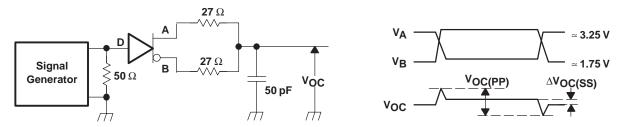
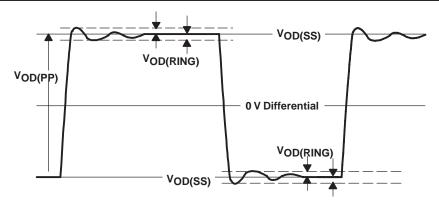



Figure 4. Driver V_{OC} Test Circuit and Waveforms

NOTE: $V_{OD(RING)}$ is measured at four points on the output waveform, corresponding to overshoot and undershoot from the $V_{OD(H)}$ and $V_{OD(L)}$ steady state values.

Figure 5. V_{OD(RING)} Waveform and Definitions

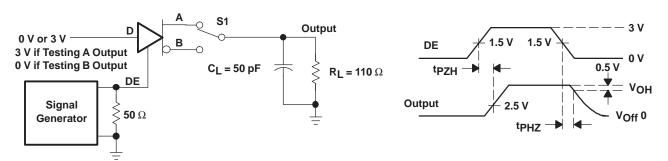


Figure 6. Driver Enable/Disable Test, High Output

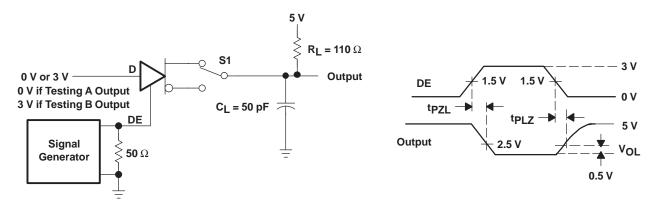


Figure 7. Driver Enable/Disable Test, Low Output

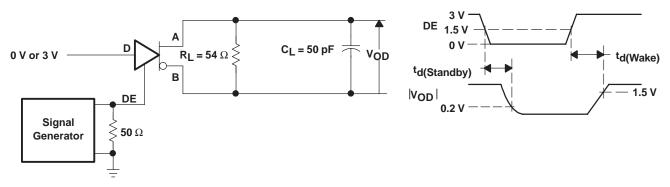


Figure 8. Driver Standby/Wake Test Circuit and Waveforms

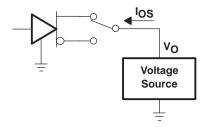


Figure 9. Driver Short-Circuit Test

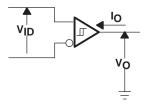


Figure 10. Receiver DC Parameter Definitions

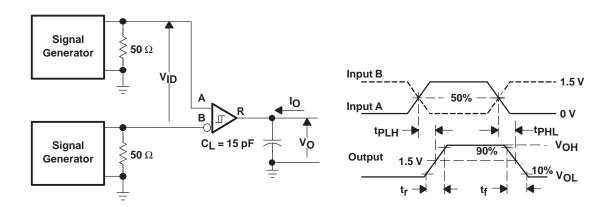


Figure 11. Receiver Switching Test Circuit and Waveforms

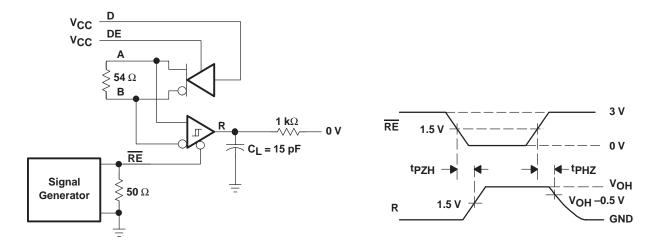


Figure 12. Receiver Enable Test Circuit and Waveforms, Data Output High

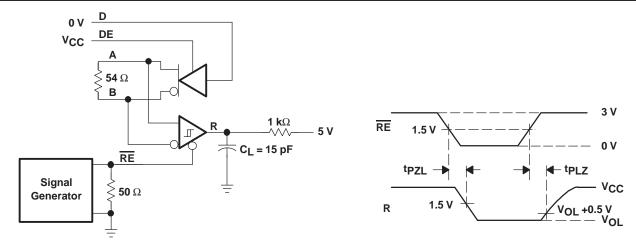


Figure 13. Receiver Enable Test Circuit and Waveforms, Data Output Low

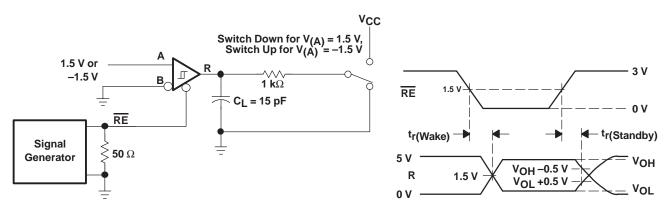


Figure 14. Receiver Standby and Wake Test Circuit and Waveforms

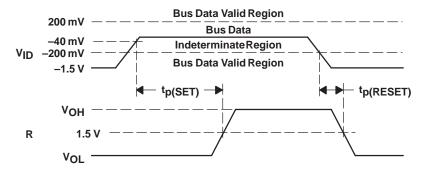
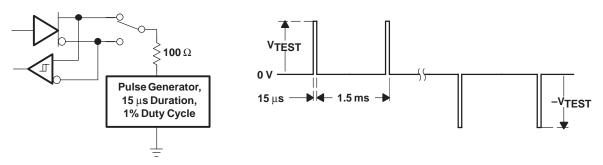
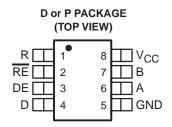
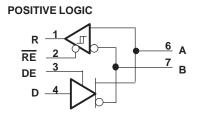
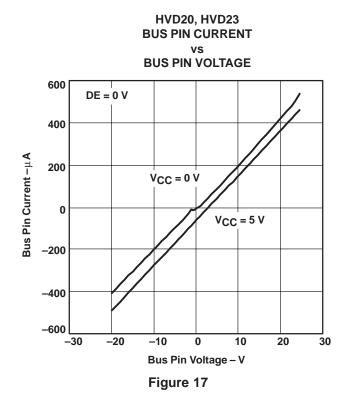
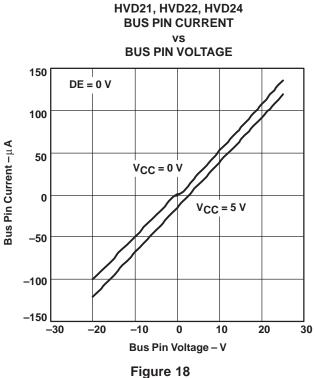


Figure 15. Receiver Active Failsafe Definitions and Waveforms

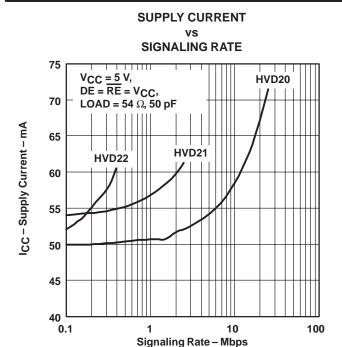




Figure 16. Test Circuit and Waveforms, Transient Overvoltage Test


PIN ASSIGNMENTS



LOGIC DIAGRAM



TYPICAL CHARACTERISTICS

DRIVER LOAD CURRENT V_{OD}-Driver Differential Output Voltage - V 4.5 V_{CC} = 5.5 V 4 3.5 $V_{CC} = 5 V$ 3 2.5 2 V_{CC} = 4.5 V 1.5 1 0.5 0 0 10 40 50 70 80 IL - Driver Load Current - mA

DRIVER DIFFERENTIAL OUTPUT VOLTAGE

HVD20, HVD23

Figure 20

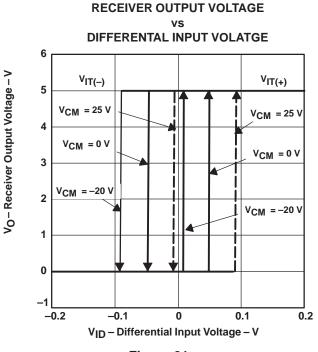
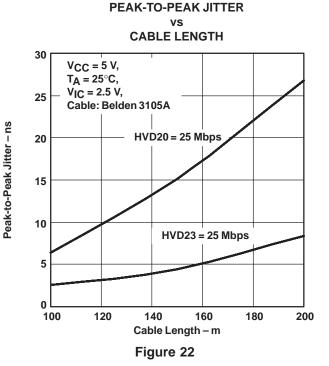
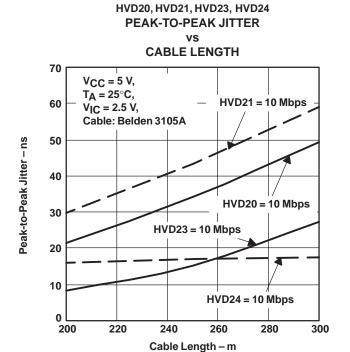



Figure 21



14

HVD20, HVD23

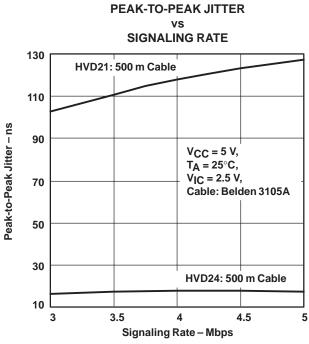


Figure 24

15

APPLICATION INFORMATION

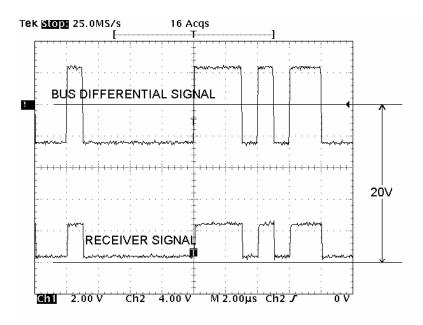


Figure 25. HVD22 Receiver Operation With 20 V Offset on Input Signal

$ H(s) = k_0 \left[\left(1 - k_1 \right) + \frac{k_1 p_1}{\left(s + p_1 \right)} \right] \left[\left(1 - k_2 \right) + \frac{k_2 p_2}{\left(s + p_2 \right)} \right] \left[\left(1 - k_3 \right) + \frac{k_3 p_3}{\left(s + p_3 \right)} \right] $	k0 (DC loss)	p1 (MHz)	k1	p2 (MHz)	k2	p3 (MHz)	k3
Similar to 160m of Belden 3105A	0.95	0.25	0.3	3.5	0.5	15	1
Similar to 250m of Belden 3105A	0.9	0.25	0.4	3.5	0.7	12	1
Similar to 500m of Belden 3105A	0.8	0.25	0.6	2.2	1	8	1
Similar to 1000m of Belden 3105A		0.3	1	3	1	6	1

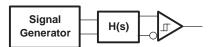


Figure 26. Cable Attenuation Model for Jitter Measurements

INTEGRATED RECEIVER EQUALIZATION USING THE HVD23

Figure 27 illustrates the benefits of integrated receiver equalization as implemented in the HVD23 transceiver. In this test setup, a differential signal generator applied a signal voltage at one end of the cable, which was Belden 3105A twisted-pair shielded cable. The test signal was a pseudo-random bit stream (PRBS) of nonreturn-to-zero (NRZ) data. Channel 1 (top) shows the eye-pattern of the differential voltage at the receiver inputs (after the cable attenuation). Channel 2 (bottom) shows the output of the receiver.

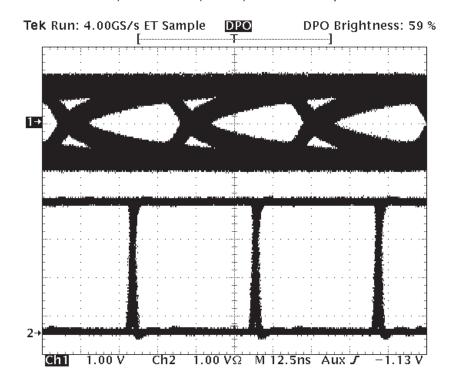


Figure 27. HVD23 Receiver Performance at 25 Mbps Over 150 Meter Cable

INTEGRATED RECEIVER EQUALIZATION USING THE HVD24

Figure 28 illustrates the benefits of integrated receiver equalization as implemented in the HVD24 transceiver. In this test setup, a differential signal generator applied a signal voltage at one end of the cable, which was Belden 3105A twisted-pair shielded cable. The test signal was a pseudo-random bit stream (PRBS) of nonreturn-to-zero (NRZ) data. Channel 1 (top) shows the eye-pattern of the bit stream. Channel 2 (middle) shows the eye-pattern of the differential voltage at the receiver inputs (after the cable attenuation). Channel 3 (bottom) shows the output of the receiver.

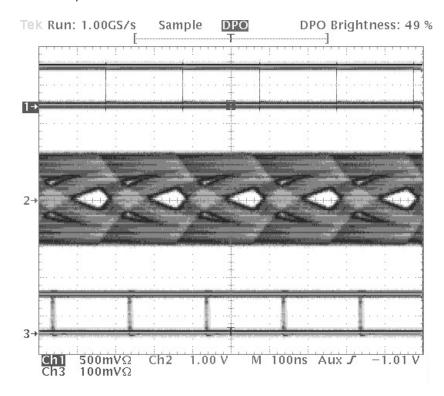
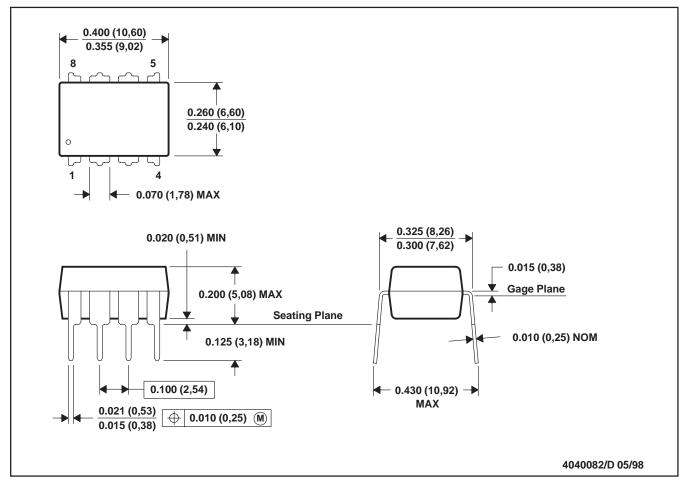
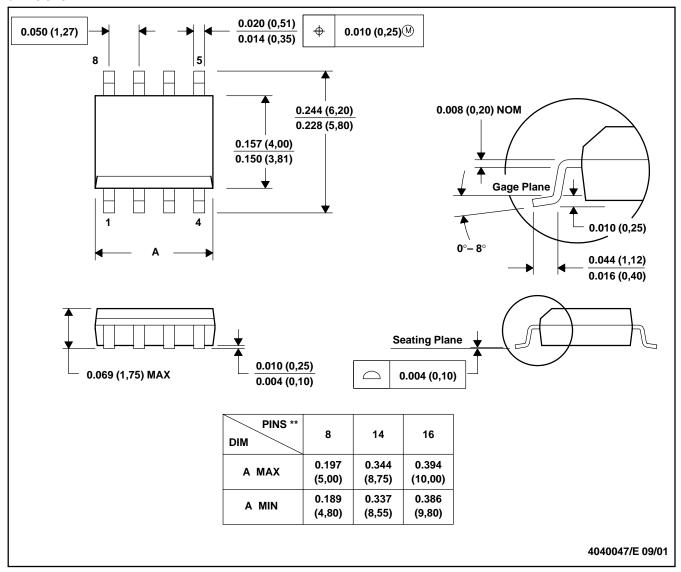



Figure 28. HVD24 Receiver Performance at 5 Mbps Over 500 Meter Cable

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated