TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

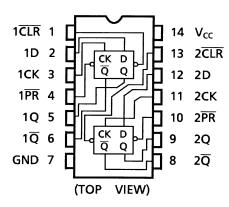
TC74HC74AP,TC74HC74AF,TC74HC74AFN

Dual D-Type Flip Flop Preset and Clear

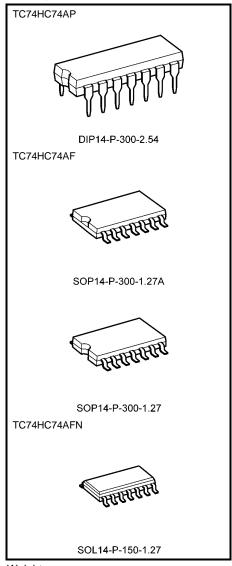
The TC74HC74A is a high speed CMOS D FLIP FLOP fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The signal level applied to the D INPUT is transferred to Q OUTPUT during the positive going transition of the CLOCK pulse.

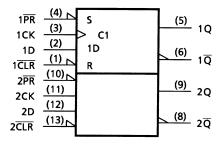

CLEAR and PRESET are independent of the CLOCK and are accomplished by setting the appropriate input to an "L" level.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

- High speed: $f_{max} = 77 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $ICC = 2 \mu A \text{ (max)}$ at $Ta = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: |IOH| = IOL = 4 mA (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2~6 V
- Pin and function compatible with 74LS74

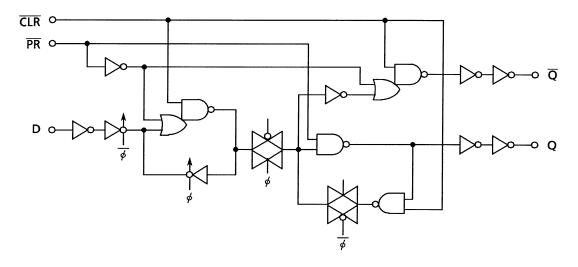
Pin Assignment

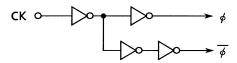

Note: xxxFN (JEDEC SOP) is not available in Japan.

Weight

DIP14-P-300-2.54 : 0.96 g (typ.) SOP14-P-300-1.27A : 0.18 g (typ.) SOP14-P-300-1.27 : 0.18 g (typ.) SOL14-P-150-1.27 : 0.12 g (typ.)

IEC Logic Symbol




Truth Table

	Inp	uts		Out	puts	Function
CLR	PR	D	CK	Q	Ια	Tunction
L	Н	Х	Х	L	Н	Clear
Н	L	Х	Х	Н	L	Preset
L	L	Х	Х	Н	Н	
Н	Н	L		L	Н	
Н	Н	Н		Н	L	
Н	Н	Х	\Box	Q _n	\overline{Q}_n	No Change

X: Don't care

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	Vcc	-0.5~7	V
DC input voltage	V _{IN}	-0.5~V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	I _{OK}	±20	mA
DC output current	l _{OUT}	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	P _D	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65~150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	Vcc	2~6	V
Input voltage	V _{IN}	0~V _{CC}	V
Output voltage	V _{OUT}	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
		0~1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0~500 (V _{CC} = 4.5 V)	ns
		0~400 (V _{CC} = 6.0 V)	

Note: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

3

Electrical Characteristics

DC Characteristics

		Test Condition			-	Га = 25°C		Ta = -4	I India	
Characteristics	Symbol				Min	Тур.	Max	Min	Max	Unit
				2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}		_	4.5	3.15	_	_	3.15	_	V
				6.0	4.20	_	_	4.20	—	
				2.0	_	_	0.50	_	0.50	
Low-level input voltage	V_{IL}		_	4.5	_	_	1.35	_	1.35	V
Ŭ				6.0	_	_	1.80	_	1.80	
	Voн	VIN = VIH or VIL	I _{OH} = -20 μA	2.0	1.9	2.0	_	1.9	_	
				4.5	4.4	4.5	_	4.4	_	
High-level output voltage				6.0	5.9	6.0		5.9	_	V
			$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80		5.63	_	
	V _{OL}	V _{IN} = V _{IH} or		2.0	_	0.0	0.1	_	0.1	
			$I_{OL} = 20 \ \mu A$	4.5		0.0	0.1	_	0.1	
Low-level output voltage				6.0		0.0	0.1	_	0.1	V
		V _{IL}	$I_{OL} = 4 \text{ mA}$	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 5.2 \text{ mA}$	6.0		0.18	0.26	_	0.33	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0	_	_	±0.1	_	±1.0	μА
Quiescent supply current	I _{CC}	$V_{IN} = V_{C}$	_C or GND	6.0	_	_	2.0	_	20.0	μА

4

Timing Requirements (input: $t_r = t_f = 6 \text{ ns}$)

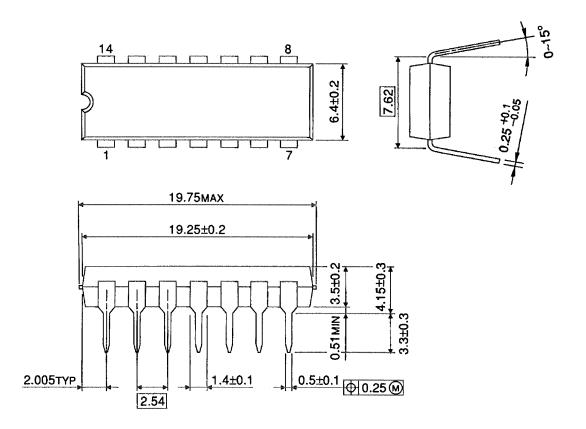
Characteristics	Symbol	Test Condition	Test Condition			Ta = -40 ~85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum nulae width	4		2.0	_	75	95	
Minimum pulse width (CK)	t _W (L)	_	4.5	_	15	19	ns
(CK)	t _{W (H)}		6.0	_	13	16	
Minimum pulse width			2.0	_	75	95	
(CLR, PR)	t _{W (L)}	_	4.5	_	15	19	ns
(OLK, FK)			6.0	_	13	16	.
			2.0		75	95	
Minimum set-up time	t _S	_	4.5	_	15	19	ns
			6.0	_	13	16	
			2.0	_	0	0	
Minimum hold time	t _h	_	4.5	_	0	0	ns
			6.0		0	0	
Minimum removal time			2.0		25	30	
(CLR, PR)	t _{rem}	_	4.5	_	5	6	ns
(OLIX, FIX)			6.0	_	4	5	
			2.0	_	6	5	
Clock frequency	f	_	4.5	_	31	25	MHz
			6.0	_	36	29	

AC Characteristics (C_L = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: t_r = t_f = 6 ns)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Output transition time	t _{TLH}	_	_	6	12	ns
Propagation delay time (CK-Q, \overline{Q})	t _{pLH}	_	_	13	26	ns
Propagation delay time (CLR , PR -Q, Q)	t _{pLH}	_	_	14	26	ns
Maximum clock frequency	f _{max}	_	36	77	_	MHz

AC Characteristics (C_L = 50 pF, input: t_r = t_f = 6 ns)

		Test Condition		Ta = 25°C			Ta = -4		
Characteristics	Symbol		V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
Output transition time	t _{TLH} t _{THL}		2.0 4.5 6.0		30 8 7	75 15 13	_ _ _	95 19 16	ns
Propagation delay time (CK-Q, \overline{Q})	t _{pLH} t _{pHL}	I	2.0 4.5 6.0		48 16 13	150 30 26		190 38 32	ns
Propagation delay time (CLR , PR -Q, Q)	t _{pLH} t _{pHL}	-	2.0 4.5 6.0		51 17 15	150 30 26	_ _ _	190 38 32	ns
Maximum clock frequency	f _{max}	_	2.0 4.5 6.0	6 31 36	21 63 67	_ _ _	5 25 29	_ _ _	MHz
Input capacitance	C _{IN}	_		_	5	10	_	10	pF
Power dissipation capacitance	C _{PD}		(Note)		34		_		pF

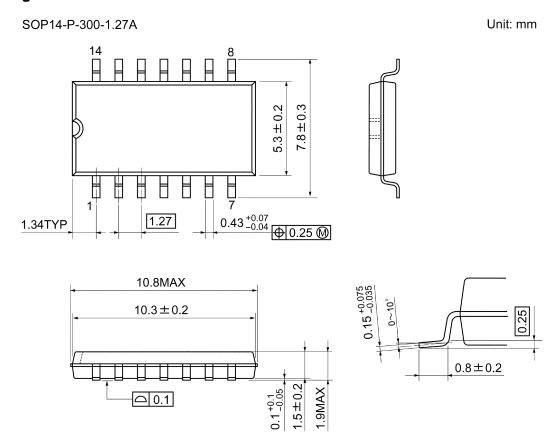

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/2$ (per F/F)

Package Dimensions

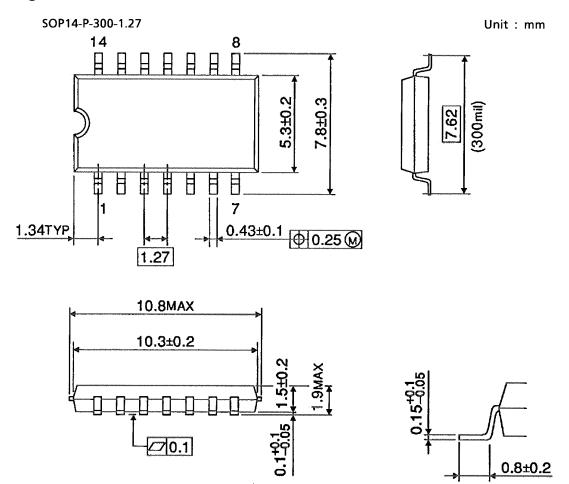
DIP14-P-300-2.54 Unit: mm



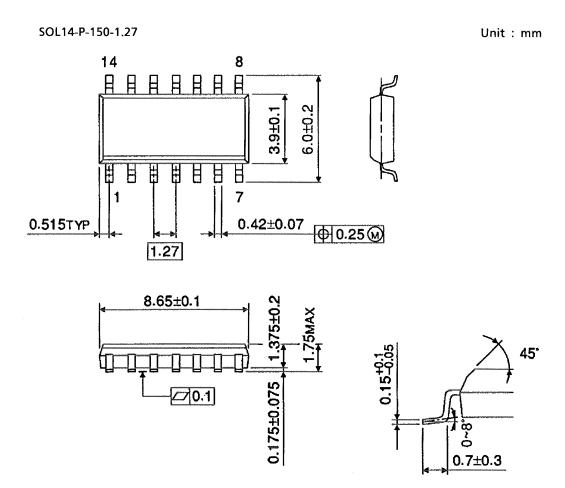
7

Weight: 0.96 g (typ.)

Package Dimensions


TOSHIBA

Weight: 0.18 g (typ.)



Package Dimensions

Weight: 0.18 g (typ.)

Package Dimensions (Note)

Note: This package is not available in Japan.

Weight: 0.12 g (typ.)

Note: Lead (Pb)-Free Packages

DIP14-P-300-2.54 SOP14-P-300-1.27A SOL14-P-150-1.27

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_c
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E